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ABSTRACT

SUBSIDIZED CROP INSURANCE AND TECHNOLOGICAL CHANGE IN U.S.

CROP PRODUCTION

Anna Chemeris Advisor:

University of Guelph, 2019 Professor Alan P. Ker

Innovation in the agricultural sector will determine our ability to consistently sustain

high yields and feed nine billion people by 2050. Most of the world’s agricultural crop

production is produced under heavily subsidized crop insurance, so understanding the

impact that subsidized insurance has on technological change is important. In the United

States, insurance premium subsidies increased from 30 percent to 60 percent between

1994 and 2000. In this thesis, I compare the rates of technological change in the lower and

upper tails of crop yield distributions before and after the subsidy change by modelling

corn, soybean, and winter wheat yields as a mixture of two normal distributions. My

results indicate that higher subsidies increase the rates of technological change in both

tails of the yield distribution, with the increase being greater in the lower tail. These

results can be used to inform the design of business risk management programs.
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Chapter 1 Introduction

One of the biggest challenges facing global agriculture today is feeding the world’s

growing population – an estimated nine billion people by 2050. Technological change

has historically been a major driver of yield increases and will continue to dictate our

ability to sustain high yields and meet food demand. In addition, climate change will

negatively impact agricultural production in North America due to changing weather

patterns and events, and so, again, technological change will be important in building

yield resiliency and meeting global food demand. The majority of agricultural crop pro-

duction in developed countries is produced under heavily subsidized crop insurance, and

this may have multiple effects on technological change. First, high subsidies increase

the returns to innovate, increasing the supply of innovations and the overall rate of

technological change. Second, high subsidies decrease financial risk, potentially incen-

tivizing the adoption of high-risk high-reward technologies at the expense of competing

risk-reducing technologies. In the United States, subsidies on crop insurance premiums

were substantially increased under the 1994 Federal Crop Insurance Reform Act and the

2000 Agricultural Risk Protection Act. In this thesis, I use these policy changes as a

natural experiment to empirically investigate the effect that the increased subsidies had

on the rates of technological change in corn, soybean, and winter wheat production in

the United States.

Meeting the world’s growing food demand and feeding over nine billion people by

2050 is a major challenge for global agriculture (Godfray et al., 2010; Pretty et al.,

2010; McKenzie and Williams, 2015). One of the main ways to address this challenge is
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agricultural innovation1 – a solution that has been working well historically, especially

over the past century. Technological advancements in fertilizer, herbicides and pesticides,

farm machinery, irrigation, and seed genomics have allowed producers to substantially

increase agricultural yields, often without the need to bring more land into production

(Evenson and Gollin, 2003; Godfray et al., 2010; Piesse and Thirtle, 2010; Pisante,

Stagnari, and Grant, 2012; Wright, 2012; McKenzie and Williams, 2015). Such advances

lead to an over six-fold increase in corn yields and over three-fold increases in soybean

and wheat yields in the United States over the past century (Alston, Beddow, and

Pardey, 2010; Piesse and Thirtle, 2010; National Agricultural Statistics Service, 2019).

Additional proposed ways to address the global food challenge include reducing food

waste (Godfray et al., 2010; Parfitt, Barthel, and MacNaughton, 2010; Foley et al.,

2011), as well as reducing the overconsumption of calories and animal-based protein

sources, particularly beef (Godfray et al., 2010; Foley et al., 2011; Ranganathan et al.,

2016). However, both of these solutions could be challenging to implement because of

increasing global wealth – both food waste and meat consumption tend to increase with

higher incomes. Thus, agricultural innovation will continue to play a dominant role in

meeting growing food demand. In addition, because the United States is a major global

exporter of corn and soybeans, innovation in these production sectors will influence the

ability to stay internationally competitive.

Technological change will also determine our ability to sustain high yields in the face

of a changing climate. Numerous studies conducted over the past 20 years all suggest

that climate change will have a major impact on crop production in North America. The

impact will not be uniform across all regions. Southern production regions, such as the

1I use the terms “innovation” and “technological change” interchangeably.
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Midwest and the southern states, are likely to experience substantial decreases in crop

yields due to the increased frequency of extreme heat and drought conditions (Schlenker

and Roberts, 2009; Lobell et al., 2013, 2014). For example, Schlenker and Roberts (2009)

find that while moderate heat is essential for optimal crop yields, persistent temperatures

above 30 degrees Celsius (86 degrees Fahrenheit) significantly damage corn and soybean

production and may cause yield reductions of 30 to 80 percent under a range of climate

change scenarios by the end of the 21st century. Northern production regions, such as

Canada, will likely benefit from warmer temperatures and longer growing seasons (Weber

and Hauer, 2003; Cabas, Weersink, and Olale, 2010; Gaudin et al., 2015). However,

despite the warmer climate, the variability in temperature and precipitation from year

to year will increase, with potentially wetter springs, drier summers, and more frequent

abnormal precipitation events (Gaudin et al., 2015). This increased variability in weather

will negatively affect average crop yields and year-to-year yield variability in regions such

as Ontario and the Midwest (Cabas, Weersink, and Olale, 2010; Schlenker and Roberts,

2009). As such, the ability of the agricultural production sector to sustain high yields

will be largely influenced by the extent of technological change and adaptation to this

changing climate. However, Burke and Emerick (2016) found limited adaptation among

major crops in the United States over the past 60 years.

Most of the world’s agricultural crop production is produced under heavily subsidized

crop insurance. In the United States and Canada, administrative and operating costs

are fully absorbed by the government in most cases, and subsidies on crop insurance pre-

miums are around 60 percent on average (Glauber, 2013; Ker et al., 2017; Rosa, 2018).

In addition, Rude and Ker (2013) have shown that 45 percent of business risk man-

agement program payments remain with the producers, demonstrating that producers
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benefit from the subsidized programs. In countries in the European Union where crop

insurance is subsidized by government, subsidies on premiums range from 30 percent

to 70 percent on average (e.g. 46 percent in Austria, 49 percent in Spain, 64 percent

in Italy, and 65 percent in France) (Bielza et al., 2007; Enjolras and Sentis, 2011). In

Brazil, premium subsidies are almost 50 percent (Lavorato and Braga, 2018), and in

China subsidies range from 50 to over 80 percent (Wang et al., 2011).

In the United States, the Federal Crop Insurance Program is a fundamental com-

ponent of domestic farm policy. Since its establishment in 1938 under the Agricultural

Adjustment Act, it grew from a small supplementary low-participation program covering

only a few crops to the major national agricultural support program it is today (Rosa,

2018). Subsidies on crop insurance premiums were first implemented in 1980 when the

insurance program underwent significant changes under the Federal Crop Insurance Act.

Under this Act, premium subsidies at the 65 percent coverage level were set at 30 percent

(Glauber, 2004, 2013; Rosa, 2018). In 1994, the crop insurance program underwent even

greater changes under the Federal Crop Insurance Reform and Department of Agricul-

ture Reorganization Act. Enrollment in the insurance program was made mandatory

to be eligible for payments under other federal farm support programs. The 1994 Act

also introduced catastrophic coverage level (CAT) covering losses exceeding 50 percent

of an average yield. The Federal Crop Insurance Corporation paid 100 percent of the

CAT premium, with farmers paying only a small administrative fee (Rosa, 2018). At the

same time, premium subsidies on buy-up coverage – coverage levels above 50 percent of

yield – were increased to just over 40 percent at the 65 percent coverage level. Further

increases in the premium subsidies occurred under the Agricultural Risk Protection Act

of 2000, with subsidies increasing to 60 percent (Glauber, 2004, 2013; Rosa, 2018). The
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main goal of the increased subsidization in both the 1994 and the 2000 Acts was to

increase farmer participation in the insurance program.

Participation in the Federal Crop Insurance Program increased substantially since

its introduction, especially following the 1980 and 1994 Acts. Percent of eligible acres

enrolled in the program grew from only 12 percent in 1980 to over 86 percent in 2015,

and the number of insured crops increased from 28 to 123 over this same time period

(Rosa, 2018). The greatest spike in participation followed the 1994 Act, mainly be-

cause of the mandatory enrollment requirement for eligibility under other programs.

Although participation in the crop insurance program decreased slightly after the eligi-

bility requirement was repealed in 1996, enrollment in the program continued to grow,

particularly after premium subsidies were further increased in the 2000 Act (Rosa, 2018).

From 2007 to 2016, the total net cost of the crop insurance program was $72 billion – the

second largest outlay in the farm bill (nutrition being the largest). Of the $72 billion,

60 percent ($43 billion) was direct benefits to farmers (Rosa, 2018).

Because the crop insurance program is a vital part of agricultural production in

the United States and because innovation will be pivotal in meeting increased food

demand at affordable prices, understanding and quantifying the impact that subsidized

insurance has on technological change is important. Economic theory suggests that

highly subsidized insurance may potentially have two effects on technological change:

an income effect and a risk effect.

Income effect : Subsidization makes insurance cheaper for farmers, increasing the

amount of income that they are able to spend on new technologies and resulting in an

increased rate of technological change. In addition, seeing that producers now have a

greater willingness to adopt new technologies, agricultural R&D firms increase innovation
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activity and expand the set of technologies available to farmers, which also increases the

rate of technological change. This overall positive effect of higher subsidies on the rate

of technological change can be called the income (or wealth) effect.

Risk effect : With crop insurance, farmers do not have to worry about lower yields

because they will be compensated for yield losses. This potentially creates an incentive to

reduce the use of risk-reducing technologies and instead adopt riskier technologies that

can produce higher yields. Because high premium subsidies make insurance cheaper,

producers may be inclined to increase coverage and rely more on insurance, making the

willingness to accept greater risk stronger. This increased adoption of high-risk high-

reward technologies at the expense of competing risk-reducing technologies can be called

the risk or the moral hazard effect.

The following figures illustrate the risk effect. Figure 1.1 shows a hypothetical

yield distribution for corn produced under a low-risk technology. On average, the yield

achieved with this technology is not very high – only 120 bushels per acre. However,

the variability, i.e. riskiness, is not large: there is a chance of having lower than av-

erage yields or higher than average yields, but these probabilities are not very high.

Conversely, Figure 1.2 shows an example of a corn yield distribution produced under a

high-risk technology. This (hypothetical) technology is able to produce higher average

yields than the low-risk technology – around 140 bushels per acre. However, the possibil-

ity of a lower than average yield is fairly high, as seen from the thick lower tail. Assume

that the two technologies are competing: the adoption of one technology precludes the

adoption of the other technology. A risk-averse producer choosing between these two

technologies may prefer the low-risk one (Figure 1.1). Now assume that crop insurance

is available. What insurance essentially does is cut off the lower tail, as shown in Figure
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1.3. In this new situation, a risk-averse producer choosing between the two technolo-

gies may be more willing to adopt the riskier one because they can now achieve higher

yields and not have to worry about the lower tail anymore. Insurance has essentially

reduced their income variability, because now they will be compensated for yield losses.

High premium subsidies make insurance cheaper and encourage greater participation

in insurance programs, and so this risk effect – substitution away from risk-reducing

technologies towards competing high-risk technologies – may be more prominent under

higher subsidization.

Figure 1.1: Hypothetical corn yield distribution for a low-risk technology.
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Figure 1.2: Hypothetical corn yield distribution for a high-risk technology.

Figure 1.3: Hypothetical corn yield distribution for a high-risk technology with in-
surance.

As was already mentioned, government subsidies on crop insurance premiums in

the United States increased substantially – from 30 percent to 60 percent – following

the Crop Insurance Reform Act of 1994 and the Agricultural Risk Protection Act of

2000. These policy changes represent a unique natural experiment which can be used

to analyze differences in the rates of technological change before and after the subsidy

increase and to test for the presence of the income and risk effects. To the best of my
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knowledge, no literature has yet looked at this question.

Technological change can affect the crop yield distribution in different ways, and

these changes may not necessarily be uniform throughout all parts of the distribution.

While the income effect is likely to be consistent across the yield distribution, the risk

effect can create heterogeneity in technological change between different parts of the

distribution. Thus, when analyzing the effect of increased subsidies on technological

change, it is important to measure technological change in a way that would account for

this heterogeneity; otherwise, it will not be possible to measure the risk effect.

The primary objective of my thesis is to empirically estimate the effect of the in-

creased crop insurance premium subsidies on the rates of technological change in crop

production in the United States. To account for and measure the potentially heteroge-

neous effect of these changes on different parts of the yield distribution, I use a mixture

model to estimate the rates of technological change in the lower and upper tails of crop

yield distributions. I focus on corn, soybean, and winter wheat yields, which are the

major economically significant crops in the United States. Figure 1.4 illustrates my re-

search question. Using a mixture model, I will estimate two rates of technological change

corresponding to the two mixture components – lower and upper. The two components

essentially measure the different rates of technological change in ”poor-year” yields and

”good-year” yields. I want to empirically estimate whether there has been any change

in these two rates of technological change after the subsidy increases (represented by

the vertical dashed line in Figure 1.4): Have the rates stayed the same or have they

increased or decreased? Was the direction of the effect the same in both components or

different?
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Figure 1.4: My thesis research question.

The remainder of this thesis proceeds as follows. In Chapter 2, I provide an overview

of crop production in the United States, summarize technological advancements over

the past century, and review the existing literature on crop insurance and choice of

technologies with a focus on adaptation to climate change. In Chapter 3, I describe

the data that I used in my analysis and outline my empirical approach and crop yield

model. In Chapter 4, I present the results of my empirical analysis and then discuss the

economic implications of these results in the context of my research question in Chapter

5. I conclude with Chapter 6, in which I briefly summarize my results and emphasize

the implications of my research. Supplemental information and results which are not

thoroughly discussed within the thesis but may be of interest to readers are available in

the Appendix.
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Chapter 2 Literature Review

2.1 Crop Production in the United States

The United States is a major global producer of numerous field crops. It leads the

world’s corn and soybean production and is the largest global exporter of corn and

second-largest exporter of soybeans (Ort and Long, 2014; United States Department of

Agriculture, 2018). In 2017, total grain corn production in the United States was over

14.4 billion bushels valued at $48.5 billion. Total soybean production in the same year

was 4.4 billion bushels valued at $41 billion dollars (National Agricultural Statistics

Service, 2019). Over 90 million acres and over 80 million acres are planted annually

to corn and soybeans, respectively. The majority of corn and soybean production is

concentrated in the Midwest Corn Belt states – Illinois, Indiana, Iowa, South Dakota,

Nebraska, Ohio, Minnesota, and Wisconsin (Green et al., 2018). Illinois, Iowa, and

Indiana account for nearly half of corn production every year (National Agricultural

Statistics Service, 2019). Figures 2.1 and 2.2 illustrate the geographical spread of corn

and soybean production in the United States in 2017. Note how the production of both

crops is concentrated in the Corn Belt area.

Wheat is the third-largest field crop in the United States in terms of production

after corn and soybeans. Although wheat exports have been declining over the past

couple of decades due to increased competition from Russia, the European Union, and

Canada, wheat continues to be an economically significant crop for U.S. agriculture

(United States Department of Agriculture, 2018). In 2017, more than 1.7 billion bushels
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Figure 2.1: Grain corn production by county for selected states in the United States
in 2017. Source: National Agricultural Statistics Service (2019).
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Figure 2.2: Soybean production by county for selected states in the United States
in 2017. Source: National Agricultural Statistics Service (2019).
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of wheat were produced and valued at over $8.1 billion, with Kansas, Montana, and

North Dakota being the largest wheat-producing states (National Agricultural Statistics

Service, 2019). The three major crops – corn, soybeans and wheat – account for about

70 percent of acreage enrolled in the Federal Crop Insurance Program and 70 percent of

claim payments (Congressional Budget Office, 2017).

2.2 Agricultural Innovation

Over the past century, average crop yields all around the world have increased dramat-

ically. In the United States specifically, average corn yields have increased from around

20 bushels per acre in the 1920s to over 170 bushels per acre today, as seen in Figure

2.3 (National Agricultural Statistics Service, 2019). The increase in average soybean

and winter wheat yields over the past 90 years has also been steady. Soybean yields

increased from approximately 11 bushels per acre to over 50 bushels per acre, and win-

ter wheat increased from 15 bushels per acre to about 50 bushels per acre (Figure 2.3).

Technological advancements in the agricultural sector have been the main driver of this

growth. Fertilizer, herbicides and pesticides, farm machinery, irrigation, seed genomics,

and other agricultural innovations have allowed producers to substantially increase agri-

cultural yields, often without the need to bring more land into production (Alston,

Beddow, and Pardey, 2010; Piesse and Thirtle, 2010; Pisante, Stagnari, and Grant,

2012; Wright, 2012). Plant breeding and development of high-yielding crop varieties,

particularly rice and wheat, have lead to large productivity gains in both developed and

developing counties during the Green Revolution (Evenson and Gollin, 2003; Tilman,

1998). The discovery of the Haber-Bosch process for the production of nitrogen fertil-

izer from atmospheric nitrogen at the beginning of the twentieth century, as well as the
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Figure 2.3: Corn, soybean and winter wheat average yields (bushels per acre) in the
United States from 1924 to 2018. Source: historical yield data, National
Agricultural Statistics Service (2019).

development and increased use of other synthetic fertilizers, has been paramount in in-

creasing crop yields and feeding the growing global population (Tilman, 1998; Pisante,

Stagnari, and Grant, 2012). Along with the development of irrigation systems, these

advancements have substantially increased crop productivity and have allowed for the

intensification as opposed to extensification of agricultural production (Godfray et al.,

2010; Foley et al., 2011; Mueller et al., 2012; Pisante, Stagnari, and Grant, 2012).

One of the major recent breakthroughs in crop production has been the genetic
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modification (also called genetic engineering) of crops. The first genetically modified

crops – corn, soybeans, cotton, and canola – became commercially available in the

United States in 1996 and were rapidly and widely adopted by U.S. farmers (Fernandez-

Cornejo et al., 2014). These crops have traits that give them resistance to certain

insects (Bt trait), as well as tolerance to herbicides such as glyphosate (HT trait) which

makes weed control easier. Genetically modified crop varieties can have either one of the

traits, Bt or HT, or both (stacked varieties) (Fernandez-Cornejo et al., 2014; McFadden

et al., 2019). Figure 2.4 illustrates the rapid increases in the adoption of genetically

modified soybeans, cotton, and corn in the United States since their introduction. In

2013, 90 percent of total corn acres and 93 percent of total soybean acres were planted to

genetically modified hybrids (Fernandez-Cornejo et al., 2014). As noted by Fernandez-

Cornejo et al. (2014), the main reason for producers’ such high willingness to adopt

the genetically modified hybrids is yield gains. In addition to herbicide-tolerant and

insect-resistant corn, drought-resistant corn (both conventionally bred and genetically

modified) has been recently introduced to the U.S. markets, and the adoption of such

hybrids is also rapidly growing, as seen in Figure 2.5 (McFadden et al., 2019).

2.3 Insurance and Choice of Technologies

Crop insurance reduces the financial risk faced by producers and can thus have various

effects on management choices and technology adoption decisions. Numerous literature

suggest that moral hazard – using fewer risk-mitigating measures than without insurance

– is a serious problem for crop insurance (Chambers, 1989; Miranda, 1991). Evidence on

whether crop insurance increases or decreases chemical input use varies in the literature.

Some studies, such as Babcock and Hennessy (1996) and Smith and Goodwin (1996),
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Figure 2.4: Adoption of genetically modified soybeans, cotton and corn in the United
States since 1996. Source: Figure 5 from Fernandez-Cornejo et al. (2014).
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Figure 2.5: Percent of United States corn acreage planted to insect-resistant,
herbicide-tolerant, and drought-tolerant hybrids since 2000. Source: Fig-
ure 2 from McFadden et al. (2019).
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suggest that crop insurance decreases chemical input use, while others suggest that in-

surance increases chemical use at the intensive margin (Horowitz and Lichtenberg, 1993)

and the extensive margin (Wu, 1999). Crop insurance may also encourage expansion of

production and the adoption of potentially harmful practices. For example, Claassen,

Langpap, and Wu (2017) demonstrated that crop insurance can alter producers’ incen-

tives in two ways: expansion of production to marginal lands and switching to crops that

are covered by insurance but are potentially more erosive and input-intensive. These

findings are supported by other studies, such as Wu (1999), Goodwin, Vandeveer, and

Deal (2004) and Miao, Hennessy, and Feng (2016). On the issue of soil erosion, how-

ever, Goodwin and Smith (2003) suggest that it is actually not the insurance program

that can increase erosion (due to increased participation and expansion of production)

but other government support programs. Also on the topic of environmental impacts,

Walters et al. (2012) have found that subsidized crop insurance does create negative

environmental impacts but they are small and are often countered by beneficial impacts

also resulting from crop insurance adoption. Outside of crop insurance, studies have

been finding evidence of moral hazard in other forms of agricultural insurance; for ex-

ample, Roll (2019) has found evidence of moral hazard in Norwegian aquaculture. This

indicates that the moral hazard issue is not unique to crop insurance. Also, from the

insurance provider side, Ker and McGowan (2000) has shown that insurance companies

may use weather-based adverse selection to generate excess rents.

Adaptation to climate change is important for sustaining high agricultural productiv-

ity in the long term. However, Burke and Emerick (2016) have found limited adaptation

to climate change by farmers in the United States over the past 60 years. Studies such

as Antón et al. (2012) and Di Falco et al. (2014) suggest that crop insurance may be a
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lower-cost substitute for on-farm adaptation measures because high subsidies make in-

surance cheaper for producers, and so the demand for crop insurance may increase with

climate change. When considering the potential ways in which agriculture can adapt to

climate change, Bryant et al. (2000) noted that Canadian institutional and public policy

strategies such as crop insurance programs reduce the financial risks that farmers face

from climatic variability in the short term, but in the long term tend to change adapta-

tion behaviour and reduce the incentive to adjust to changing climatic conditions. This

is also true for the United States, where Annan and Schlenker (2015) looked at corn

and soybean production in the United States and found that crops insured through the

Federal Crop Insurance Program are more sensitive to extreme heat because farmers

choose subsidized yield guarantees over costly adaptation measures. As a result, insured

acres are more prone to yield losses during drought. In addition, because of the higher

indemnities, the costs to the insurance program are greater than what they could have

been with adaptation (Annan and Schlenker, 2015). Looking at crop yields in Ontario

since 1950, Ker et al. (2017) showed that corn yield distributions are consistent with

producers substituting away from competing risk-reducing technologies to crop insur-

ance. In the Central Great Plains, Woodard et al. (2012) demonstrated that although

skip-row planting of corn increases yield performance under drought conditions, the crop

insurance program design distorts producer incentives and reduces the adoption of this

otherwise optimal technology. Schoengold, Ding, and Headlee (2014) found that farm-

ers may choose to substitute away from conservation tillage to government insurance

as a way of managing on-farm risk. Because conservation tillage is a practice that re-

duces negative environmental impacts of crop production, substitution away from such

practices decreases the environmental sustainability of farming.
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Chapter 3 Empirical Approach

3.1 Data

I obtained county-level crop yield data from the National Agricultural Statistics Service

(NASS) of the United States Department of Agriculture (USDA) for the three major

crops – corn, soybeans, and winter wheat. The most complete data was available for

the time frame of 1951 to 2017 (67 years). To be included in the analysis, the following

criteria had to be met: (i) counties had to have complete 67 years of data; (ii) states had

to have 25 or more counties with complete 67 years of data; and (iii) less than ten percent

of state acreage had to be irrigated as reported in the 2012 Census of Agriculture.

For corn, seven states met the inclusion criteria: Illinois (IL), Indiana (IN), Iowa

(IA), Minnesota (MN), Ohio (OH), South Dakota (SD), and Wisconsin (WI). These

seven states accounted for 61.8 percent of total corn produced in the United States in

2017. Six of the corn states also met the inclusion criteria for soybeans: IL, IN, IA, MN,

OH, and WI. These six states accounted for 53.9 percent of total soybean production

in 2017. For winter wheat, only two states met the inclusion criteria: Kansas (KS) and

Michigan (MI). They accounted for 27.7 percent of total winter wheat produced in 2017.

In total, my data set consisted of 414 corn counties, 373 soybean counties, and 64 winter

wheat counties.

Daily temperature (in degrees Celsius) and precipitation (in millimeters) data from

weather stations across the United States was obtained from the NOAA National Climate

Data Center for the time frame of 1951 to 2015. This data was used to compile a data set
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of six climate variables: growing degree days (GDD), extreme temperature degree days

(HDD), vapour pressure deficit over the entire growing season (VPD), vapour pressure

deficit during July and August (VPDja), precipitation over the entire growing season

(PCP), and precipitation during July and August (PCPja). The weather station data

was interpolated to the county level as in Tolhurst and Ker (2015). Growing degree days,

extreme temperature degree days, and vapour pressure deficit were calculated from the

daily data as per Schlenker and Roberts (2009), Roberts, Schlenker, and Eyer (2013),

and Tolhurst and Ker (2015).2

While numerous climate factors affect yield, the six chosen variables have the strongest

relationship with yield and are most commonly used in the literature (e.g. Cabas,

Weersink, and Olale (2010); Lobell et al. (2013); Roberts, Schlenker, and Eyer (2013);

Lobell et al. (2014); Annan and Schlenker (2015); Tolhurst and Ker (2015); Burke and

Emerick (2016)). Growing degree days measure the number of days that a crop is ex-

posed to temperatures below the critical threshold (29 degrees Celsius for corn and 30

degrees Celsius for soybeans) and have a positive relationship with yield. Extreme tem-

perature degree days are the number of days that a crop is exposed to temperatures

above the critical threshold and thus have an inverse relationship with yield. Vapour

pressure deficit can influence yield both positively and negatively, and thus its relation-

2Growing degree days, extreme temperature degree days, and vapour pressure deficit for corn and
soybeans, as well as vapour pressure deficit for winter wheat, were provided by Tor Tolhurst. Growing
degree days and extreme temperature degree days for winter wheat were calculated from raw climate
data using the following temperature thresholds adapted from Tack, Barkley, and Nalley (2015) and
Tolhurst and Ker (2016): in Kansas, the growing season was divided into three seasons – fall (September
1 to November 30), winter (December 1 to February 28/29), spring (March 1 to May 31) – with lower and
upper thresholds of 10 degrees Celsius to 17 degrees Celsius in the fall, 5 degrees Celsius to 10 degrees
Celsius in the winter, and 18 degrees Celsius to 34 degrees Celsius in the spring; in Michigan, the
growing season was divided into three seasons – fall (September 15 to November 30), winter (December
1 to February 28/29), spring (March 1 to June 15) – with thresholds of above 12 degrees Celsius in the
fall, 3 degrees Celsius to 15 degrees Celsius in the winter, and 9 degrees Celsius to 18 degrees Celsius
in the spring.
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ship with yield is an empirical question, as discussed by Roberts, Schlenker, and Eyer

(2013). On the one hand, vapour pressure deficit is related to relative humidity, with a

larger VPD implying a lack of moisture and thus having a negative impact on yield. On

the other hand, vapour pressure deficit is associated with diurnal temperature variation

– the difference between daily minimum and maximum temperatures – which is in turn

correlated with less cloud cover and more solar radiation, therefore having a positive

impact on yield (Roberts, Schlenker, and Eyer, 2013). Precipitation has a positive rela-

tionship with yield up to a particular point, after which excessive precipitation starts to

have a decreasing effect on yield due to waterlogging and oxygen deficiency.

3.2 Crop Yield Model

Technological change in crop yields is frequently measured by modelling yields over time

as a reduced form catch-all:

yt = f(t) + ε (3.1)

In these regressions, f(t) by default encompasses not only technological change but also

other factors such as climate change and policy changes, among others. This makes

it exceedingly difficult to decompose the estimated effect into specific technologies and

to identify policy change effects. Some suggest conditioning climate out to measure the

effect without climate. However, I do not want to do this for the purposes of my research

question because I want to measure technological change that occurred in response to

climatic changes. It would not be possible to measure this if climate is conditioned out.

This leaves me with more caveats than I want to be comfortable with, but, because

of the state of nature character of such event studies, this is the best available way to
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measure technological change in crop yields.

The common approach to modelling crop yields over time is estimating a single

trend (commonly linear), testing and correcting residuals for heteroscedasticity, and

then estimating a yield density parameterically (Atwood, Shaik, and Watts, 2003; Sher-

rick et al., 2004; Woodard and Sherrick, 2011; Zhu, Goodwin, and Ghosh, 2011), non-

parametrically (Goodwin and Ker, 1998; Ker and Goodwin, 2000; Racine and Ker, 2006),

or semi-parametrically (Ker and Coble, 2003; Ker and Ergun, 2007). This single trend

approach measures only the mean effect and does not capture any heterogeneity that

may be present in the data. However, technological change does not always have a uni-

form effect on all parts of the yield distribution and moves mass all around. Numerous

recent studies, such as Goodwin and Ker (1998), Ramirez, Misra, and Field (2003),

Sherrick et al. (2004), Zhu, Goodwin, and Ghosh (2011), Tolhurst and Ker (2015), and

Jiang (2017), have shown that crop yields over the past several decades have not been

changing uniformly, and so measuring the effect only at the mean may not always be

sufficient.

Because higher premium subsidies may have a non-uniform effect on technological

change in different parts of the yield distribution, being able to measure this hetero-

geneity is important. The income effect may be consistent throughout the distribution

because higher premium subsidies are likely to increase the overall rate of technological

change in both the lower and the upper tails. However, the risk effect may not be uni-

form, because it impacts the choice of technologies that directly affect the yield outcome.

If a farmer switches to a technology that helps him achieve higher yields under optimal

growing conditions but at the same time increases the probability of a low yield in poor

conditions, it makes sense to expect a non-uniform response in the yield distribution,
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because this technology affects the upper tail differently than the lower tail. To iden-

tify the possible presence of a risk effect due to increased premium subsidies, I need to

measure technological change in the different tails of the yield distribution, and so the

commonly used single trend yield model (which only measures the effect at the mean)

is not suitable for the purposes of my research question.

An alternative approach that has been recently proposed by Tolhurst and Ker (2015)

and has been used by Ker, Tolhurst, and Liu (2016), Jiang (2017) and Ker et al. (2017)

is to model yields as a mixture of normal distributions:

yt ∼
J∑
j=1

λjN(fj(t), σ
2
j ) where

J∑
j=1

λj = 1 (3.2)

Here, J is the number of mixture components, each having a probability λj. Each

mixture component represents different economic structures, and the embedded trend

functions, fj(t), represent technological change under these different structures. Using

this modelling approach is intuitive from an economics standpoint because the compo-

nents correspond to something economically insightful. The optimal number of mixtures

is data driven and can be determined using AIC or BIC. Thus far, existing literature

such as Tolhurst and Ker (2015) and Jiang (2017) has shown that crop yields are esti-

mated well with two mixtures. Because the effect of increased subsidies is likely to be

heterogeneous across the different tails of the yield distribution, I can use the approach

of Tolhurst and Ker (2015) to model the data generating process of yields as a mixture

of two normal distributions where the component mixture parameters are functions of

time. This will allow me to compare the rates of technological change in the lower and

upper tails of yield distributions before and after the subsidy increase and identify the

possible presence of a risk effect.
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Following the methods of Tolhurst and Ker (2015), I modelled county crop yields as

a two-component normal mixture:

yt ∼ (1− λt)N(αl + βlt+ δltI[1995,T ](t), σ
2
l ) + λtN(αu + βut+ δutI[1995,T ](t), σ

2
u) (3.3)

In this model, λt is the probability of the upper component in year t (computed as the

mean of the probabilities of each observation belonging to the upper component) and

αj + βjt+ δjtI[1995,T ](t), j = {l, u} is the component conditional mean with variance σ2
j .

The parameters of interest are δl and δu; they represent the change in the slopes of the

lower and upper components, respectively, after the subsidy increase. The new slopes

after the policy change are βl + δl (lower component) and βu + δu (upper component).

Crop insurance premium subsidy increases occurred twice: in 1994 under the Federal

Crop Insurance Reform Act and in 2000 under the Agricultural Risk Protection Act. As

seen in Figure 3.1, participation in the crop insurance program increased dramatically

after the 1994 Act.3 Participation also increased after the 2000 Act, but this increase

was less dramatic. Thus, for the purposes of my analysis I used 1994 as the year of a

major policy change.4 To account for the time that it may take for producers to react to

the policy change, I allowed for a one-year lag and used the year 1995 as the particular

point in time at which the premium subsidy increase had occurred.

As was done by Tolhurst and Ker (2015) and is commonly done with mixture models,

I used the expectation-maximization (EM) algorithm to estimate the unknown param-

eters of my model (i.e. λ, α, β, δ, and σ2). In the maximization step, the algorithm

3It is interesting to note that the spike in participation in 1995 was followed by a dip in 1996.
This happened because the mandatory requirement to be enrolled in crop insurance to be eligible for
payments under other support programs was repealed in 1996.

4I also performed the same analysis for 2000, but the results turned out to be very similar (nearly
identical).
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Figure 3.1: Corn and soybean acreage insured under the Federal Crop Insurance
Program. Vertical line indicates the passing of the 1994 Federal Crop
Insurance Reform Act. Source: edited version of Figure A1 from Annan
and Schlenker (2015).
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begins with starting weight values and performs a weighted estimation for each mixture

component. The weights are then updated in the expectations step. The maximization

and expectation steps are repeated until the parameter estimates converge. This process

is repeated for multiple starting values to ensure a global optimum for the likelihood

is found, and the maximum of the maximized likelihoods is chosen. In essence, this is

simply a missing membership problem.

To prevent the upper and lower mixture components from crossing over, I restricted

the intercept of the lower component to equal that of the upper component (αl = αu)

whenever a crossover was occurring. This eliminated crossovers in the early part of

the sample period, where the two components are close together, but did not prevent

components from crossing over after 1995. This is because the slopes were allowed to

change after 1995, and the algorithm was really only using 23 data points (1995-2017)

to estimate the two mixture components. To address this crossover issue, I artificially

deflated the likelihood of the parameters that were producing the crossover so that the

EM algorithm would find a different set of parameters with a maximized likelihood

but no crossover. In a similar way, I restricted the algorithm to choose non-negative

intercepts and σl no less than ten percent of σu.
5 The artifical deflation of the likelihood

eliminated crossovers and negative intercepts in most cases but not all. In essence, this is

really a model specification issue, since these crossovers results do not have an economic

(or a plant physiology) interpretation and occur mainly because of the low number of

data points available for estimation. I removed the counties with a persistent crossover

issue from my analysis.6

5When the variance of the lower component is very small, the algorithm may not be able to estimate
the lower component if there are no low yield data points later in the sample period.

6This resulted in the removal of 16 corn counties, 27 soybean counties, and 11 winter wheat counties
– a total of 54 out of 851 counties (6%) across all three crops.
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Another issue with the EM algorithm in small samples is that the component proba-

bilities tend to be biased to 1/J – in my two-component mixture, λj tends to be biased to

0.5. To address this, I modified the maximum likelihood procedure and added a penalty

function to check optimality. A penalty value equal to P (λ) = h ∗ ((1− λ)− 0)2, where

h is a tuning parameter ranging from 1 to 50, was subtracted from the likelihood. The

magnitude of the penalty increased the further away from zero the probability of the

lower component (1− λ) moved. In this penalized algorithm, the optimized parameters

from the EM algorithm were used as starting values, and optimal tuning parameters

were chosen by maximizing the non-penalized likelihood. I checked optimality by com-

paring the penalized maximum likelihood to the EM algorithm maximum likelihood and

chose the parameters7 with the higher likelihood. Interestingly, the penalized likelihood

approach found a higher optimum than the EM algorithm in many cases.

3.3 Probability of a Low Yield

To investigate whether the probability of a low yield has been changing over time and

whether or not this probability changed after the subsidy increase, I modelled the prob-

ability of a low yield (i.e. the probability of a data point belonging to the lower compo-

nent) obtained from model 3.3 as a function of time:

(1− λt) = αλ + βλt+ δλtI[1995,T ](t) (3.4)

7In addition to the restrictions on crossovers, negative intercepts, and small lower variance, a fourth
restriction was added to the penalized algorithm: λt had to be positive and less than one (because it
is a probability). This restriction was not applicable in the EM algorithm because λt was calculated
as an average of probabilities, but in the penalized algorithm parameter estimates could take on any
values unless restrictions were imposed.
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Here, (1 − λt) is the probability of a low yield, αλ is the intercept of the probability of

a low yield regressed on time, βλ is the slope representing the change in the probability

of a low yield over time, and δλ is the change in the slope after 1995. In this model,

the parameter of interest is δλ, as it measures whether the policy change – increased

subsidies – affected the probability of a low yield in any way.

3.4 Hypothesis Testing

To address my research question, I tested whether there was a change in the rates of

technological change in the upper or lower tails of the yield distribution after the subsidy

increase and, if there was a change, whether this change was positive or negative. In

model (3.3), the parameters of interest are δl and δu, representing the change in the rate

of technological change after 1995 in the lower and upper tails, respectively. I tested the

following sets of hypotheses:

Hypothesis Test 1 H0 : δl = 0

Ha : δl 6= 0 −→ δl < 0 or δl > 0

Under this hypothesis, I am testing whether a change in the rate of technological

change had occurred in the lower component, i.e. whether δl is significantly different

from zero. Using the results of this hypothesis test, I can look at whether the change was

positive or negative. Under the income effect, I would expect the change to be positive,

i.e. the rate of technological change would increase with higher subsidies, (δl > 0).

Hypothesis Test 2 H0 : δu = 0

Ha : δu 6= 0 −→ δu < 0 or δu > 0

Similar to the first test, here I am looking at whether a change in the rate of tech-
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nological change had occurred in the upper component and whether the change was

positive or negative. Again, the income effect would suggest that this change would be

positive and there would be an increase in the rate of technological change with higher

subsidies (δu > 0).

Hypothesis Test 3 H0 : δl = δu

Ha : δl 6= δu −→ δl < δu or δl > δu

In this hypothesis test, I am looking at whether the change in the rate of technological

change was different between the lower and the upper components. In the presence of

a risk effect, I would expect the change in the rate of technological change in the upper

component to be higher than that in the lower component, i.e. δu to be greater than δl.

Hypothesis Test 4 H0 : δl = 0, δu = 0

Ha : δl 6= 0, δu 6= 0 −→ δl < 0, δu < 0 or δl > 0, δu > 0

Here, I am looking at whether a change in the rate of technological change had

occurred in both the lower and the upper components (as opposed to just one component

as in Tests 1 and 2). I can also look at whether these changes were positive or negative.

Again, as with Tests 1 and 2, I would expect to see an overall increase in the rate of

technological change with higher subsidies (δl > 0, δu > 0).

To carry out the hypothesis testing, I used the likelihood ratio test:

LR = −2(lnLrestricted − lnLunrestricted) (3.5)

To construct the test statistic, I calculated two log-likelihoods: one for the unrestricted

model and one for the restricted model (model with restrictions from the null hypothesis).

Under the null hypothesis, the LR test statistic follows a chi-square distribution with
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the degrees of freedom equal to the number of restrictions. In Tests 1, 2 and 3 there is

one restriction, and in Test 4 there are two restrictions. Thus, for the one-restriction

tests the appropriate critical test value at the five percent significance level is 3.841 and

for the two-restriction test it is 5.991.

Because I am simultaneously performing hypothesis tests across multiple counties,

the true probability of type I error is no longer at five percent. To counter this, I also

applied the Holm-Bonferroni method for multiple testing to Tests 1 to 4 (Holm, 1979).

This method is likely to be overly conservative in my case because it assumes that all

hypothesis tests are independent whereas my counties are in fact spatially correlated,

but it can nevertheless provide a useful way to gauge the significance of my test re-

sults. To obtain the Holm-Bonferroni significance, I first ordered the LR test statistics

from largest to smallest and then compared each of those test statistics to the Holm-

Bonferroni critical test value, computed as α
n−j , where α is the significance level (0.05), n

is the number of counties (number of LR test statistics), and j is the location of each LR

in the ordered list, j ∈ [0, n− 1]. If the largest LR was greater than the corresponding

Holm-Bonferroni critical value, I counted this county as rejecting the null hypothesis at

the Holm-Bonferroni five percent significance level, then compared the second-largest

LR to the corresponding Holm-Bonferroni critical value, and so on down the ordered

list until the LR was no longer greater than the corresponding Holm-Bonferroni value.

This procedure provided me with a (overly conservative) count of the number of hy-

pothesis test rejections at the Holm-Bonferroni five percent significance level, which I

could compare to the number of rejections at the non-adjusted five percent significance

level. Using these two methods allowed me to obtain a lower and an upper bound on

the number of rejections to gauge the significance of my hypothesis test results across
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multiple counties.

Within the context of the probability of a low yield model (equation 3.4), I tested

whether the probability of a low yield has changed over time (Test 5) and whether the

subsidy increase affected this probability (Test 6). I performed these tests using a regular

t-test.

Hypothesis Test 5 H0 : βλ = 0

Ha : βλ 6= 0 −→ βλ < 0 or βλ > 0

Hypothesis Test 6 H0 : δλ = 0

Ha : δλ 6= 0 −→ δλ < 0 or δλ > 0

Tests 5 and 6 focus on estimated parameters from a model in which the independent

variable (1−λt) is itself an estimated regressor. To correct for the estimated regressors,

I also computed jackknife standard errors to assess the statistical significance of βλ and

δλ compared to the outcomes of the regular t-test in Tests 5 and 6. To obtain jackknife

estimates, I re-estimated the model T = 67 times, dropping one year of observations in

each iteration to end up with 67 parameter estimates.8 I then computed the jackknife

estimator of the standard error as

SEjack =

√√√√T − 1

T

T∑
t=1

(θ̂−t − ¯̂
θ)2 (3.6)

where θ̂−t is the parameter βλ or δλ estimated without year t and
¯̂
θ is the mean of all

of those parameters,
¯̂
θ = 1

T

∑T
t=1 θ̂−t. I performed t-tests using these jackknife standard

errors to test the significance of βλ and δλ while accounting for estimated regressors.

8Due to computational difficultly, I did not include the penalized maximum likelihood algorithm in
the jackknifing procedure, so these results are based only on the EM algorithm outcomes.

33



3.5 Climate Attribution Model

As mentioned previously, it is not desirable to condition out climate in the mixture

model if the interaction between technology and climate and the change that occurred

in response to climatic changes is to be measured. A different way that numerous studies

have been using to distinguish between climatic and non-climatic effects is attribution

models. In these models, the time aspect is conditioned out and the remaining spatial

variation is instead used to measure climatic and non-climatic effects. The non-climatic

effects capture changes from technology and management, and well as other spatial

factors such as soil characteristics. Literature that has used this attribution model

approach to measure the impact of climate trends on yield trends include Nicholls (1997),

Lobell and Asner (2003), Lobell and Field (2007), Tao et al. (2008), Zhang et al. (2016),

Feng et al. (2018), and Kukal and Irmak (2018).

I followed the attribution model approach to investigate how much of the change in

the rate of technological change after 1995 was driven by the policy effect, and if any of

this change is attributable to climate change. The estimated δl and δu parameters from

model 3.3 were modelled as a function of historical climate trends:

δl = Innovation+ γ∆Climate+ ε (3.7)

δu = Innovation+ γ∆Climate+ ε (3.8)

Here, Innovation is the mean yield trend, assumed to be constant, ∆Climate is historical

climate trends, γ is the response coefficients associated with the climate trends, and ε

is the residuals. The climate trends were obtained by regressing each of the six climate
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variables (GDD, HDD, VPD, VPDja, PCP, PCPja) on time and taking the estimated

slope coefficient. With time conditioned out, models 3.7 and 3.8 are estimating how

much of the remaining (non-temporal) variation is explained by non-climatic changes

in average yields (i.e. technological change) and how much is attributable to climatic

change. If the estimated changes in the rates of technological change after 1995 were

not driven solely by changes in climate, I would expect the coefficients on the climate

trends to be insignificant. The null hypothesis to be tested is thus H0: γ = 0. Not

being able to reject this null hypothesis would imply that the changes in mean yields

after 1995 were driven by non-climatic changes – e.g. the increased subsidies. This

hypothesis test was performed using a t-test. Because δl, δu, and the climate trends are

estimated parameters, I calculated jackknife standard errors to correct for this presence

of estimated regressors in the attribution model.

In a similar way, the estimated δλ parameters from the probability of a low yield

model (3.4) were regressed on the climate trends:

δλ = Innovation+ γ∆Climate+ ε (3.9)

Here, the null hypothesis to be tested is again H0: γ = 0. This hypothesis test assesses

how much of the change in the probability of a low yield after 1995 is attributable to

climatic changes. As with the previous two models, non-significant γ would imply that

any changes in the probability of a low yield were not driven solely by climatic trends.

Because δλ is an estimated regressor, I calculated jackknife standard errors to use in the

t-test.
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Chapter 4 Estimation Results

In this chapter, I report the estimation results of my empirical model and hypothesis

testing for each crop, as well as the climate attribution model results. I focus on the

estimates of δl and δu, the probability of a low yield over time model, and the hypothesis

test results. I then discuss the economic significance and implications of these results in

relation to my research question in Chapter 5. All parameter estimates from the county

crop models are summarized by state and crop in the Appendix in Tables 7.1 to 7.15.

4.1 Corn

The estimates of δl and δu for corn counties summarized by state are shown in the

boxplots in Figures 4.1 and 4.2. The estimates are both positive and negative in all

states except South Dakota, where the estimates of δu are positive in all counties. It

is interesting to note that the variation in the estimates both within and across states

is greater for δl compared to δu. The estimates of δu within states are clustered near

or around zero (South Dakota being an exception) within the range of -2 to 2, and the

estimates across states are fairly similar (Figure 4.2). Conversely, estimates of δl vary

more within states, with variations as large as from -5 to 5 in some states. Variability in

δl estimates across states is also larger than for δu estimates (compare Figures 4.1 and

4.2). The spatial distribution of these estimates is illustrated in the maps in Figures 7.1

and 7.2 in the Appendix.

Figures 4.3a and 4.3b illustrate two examples of the corn county model estimation
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Figure 4.1: Estimates of δl for corn counties by state. Red line at zero is drawn for
reference to make it easier to distinguish between negative and positive
values.
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Figure 4.2: Estimates of δu for corn counties by state. Red line at zero is drawn for
reference to make it easier to distinguish between negative and positive
values.
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(a) Stark County, Illinois (b) Medina County, Ohio
Figure 4.3: Corn model estimation results for two representative counties. Note the

changes in the slopes of both components after 1995.

results. As seen from Figure 4.3a, the rates of technological change (i.e. slopes) in Stark

County, Illinois, increased in both the lower and the upper components after the subsidy

increase in 1995, more so in the lower component. In Medina County, Ohio (Figure

4.3b), the rate of technological change after 1995 increased in the lower component,

but slightly decreased in the upper component. These counties are representative of the

overall corn model results: in general, the lower component experienced a greater change

than the upper component and was positive.

The probability of a low yield, (1 − λt), in the corn model is shown in Figure 4.4

(also mapped in Figure 7.7 in the Appendix). In most corn counties, this probability is

below 0.5, with the majority of estimates falling between 0.1 and 0.4.

The results of the hypothesis tests are given in Table 4.1. Overall, about one-third

of all corn counties rejected the null hypothesis that either one of the δj’s or both are

zero. On average, the change in the rate of technological change in both components

was positive, and was greater in the lower component (i.e. δl > δu). Indiana and Ohio
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Figure 4.4: Probability of a low yield, (1− λt), for corn counties by state.

somewhat differ from this overall average, with δu’s in many counties being significantly

negative. In the probability of a low yield model, none of the estimated δλ parameters

were significantly different from zero.

4.2 Soybeans

The estimates of δl and δu for soybeans are summarized in Figures 4.5 and 4.6, and the

spatial distribution of these estimates is mapped in Figures 7.3 and 7.4 in the Appendix.

As seen from the boxplots in Figures 4.5 and 4.6, the estimates of δl and δu are both

positive and negative in all states. Similar to the corn model results, the variation within

states is greater for the δl estimates as compared to the δu estimates. The δl estimates

across counties within states are fairly spread out, spanning a range of -1 to 1.5 in some
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Table 4.1: Corn – number of hypothesis test rejections and direction of estimated
effect.

State N δl = 0 δu = 0 δl = δu δλ = 0

Illinois 71 23 (6); 11 18 (9); 16 19 (2); 10 0 (0); 0
Indiana 60 13 (1); 6 12 (4); 1 14 (1); 8 0 (0); 0

Iowa 86 33 (5); 33 28 (5); 25 29 (5); 5 0 (0); 0
Minnesota 51 34 (7); 34 26 (7); 26 28 (6); 0 0 (0); 0

Ohio 57 7 (1); 4 12 (1); 4 9 (1); 2 0 (0); 0
Wisconsin 48 15 (3); 14 19 (3); 18 13 (3); 1 0 (0); 0
S. Dakota 23 12 (2); 10 23 (19); 23 14 (3); 9 0 (0); 0

Total 396 137 (25); 112 138 (48); 113 126 (21); 35 0 (0); 0

Notes: Some counties were removed due to convergence issues, so the number of counties used

for testing does not add up to the 414 counties included in the corn data set. First number

is the number of rejections under each hypothesis. Number in parentheses is Holm-Bonferroni

significance under multiple testing. Number after semicolon is the number of rejections for

(i) δl ≤ 0; (ii) δu ≤ 0; (iii) δl ≥ δu; (iv) δλ ≥ 0. Tests (i), (ii), and (iii) carried out by

likelihood ratio test and Test (iv) by t-test. Test (iv) used jackknife standard errors to account

for estimated regressor.

states, whereas the δu estimates are more closely clustered around zero within a range of

-0.5 to 0.5. The variation across states is not as great as with the corn model estimates,

but the difference in estimation results across states is still evident from the boxplots.

Figures 4.7a and 4.7b illustrate the estimation results for two representative soybean

counties. In Warren County, Indiana (Figure 4.7a), the rates of technological change

have increased in both the lower and upper components after 1995, with the increase

being greater in the lower component. In Renville County, Minnesota (Figure 4.7b),

there has been no change in the rate of technological change after 1995 in the upper

component but an increase in the lower component.

The probability of the lower component for soybean counties is summarized in Figure

4.8 and mapped in Figure 7.8 in the Appendix. Similar to corn, the probability of a low

yield for different soybean counties is below 0.5, with the majority of estimates ranging
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Figure 4.5: Estimates of δl for soybean counties by state. Red line at zero is drawn for
reference to make it easier to distinguish between negative and positive
values.
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Figure 4.6: Estimates of δu for soybean counties by state. Red line at zero is drawn
for reference to make it easier to distinguish between negative and posi-
tive values.

(a) Warren County, Indiana (b) Renville County, Minnesota
Figure 4.7: Soybean model estimation results for two representative soybean coun-

ties. Note the changes in the slopes of both components after 1995.
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Figure 4.8: Probability of a low yield, (1− λt), for soybean counties by state.

from 0.1 to 0.4.

The results of the hypothesis tests are given in Table 4.2. Similar to corn, about

one-third of all soybean counties rejected the null hypothesis that either one of the δj’s

or both are zero. Also similar to corn, the change in the rate of technological change

in both components was positive on average across the states, and was greater in the

lower component (i.e. δl > δu). Wisconsin results were different from this overall

average: many of the estimated δu’s were negative and smaller than the δl’s. None of

the estimated δλ’s from the probability of a low yield model were significantly different

from zero.
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Table 4.2: Soybeans – number of hypothesis test rejections and direction of estimated
effect.

State N δl = 0 δu = 0 δl = δu δλ = 0

Illinois 71 20 (2); 19 33 (8); 33 19 (3); 6 0 (0); 0
Indiana 55 14 (2); 10 5 (2); 5 13 (2); 6 0 (0); 0

Iowa 84 19 (3); 16 13 (2); 7 17 (3); 5 0 (0); 0
Minnesota 48 23 (8); 22 5 (1); 4 25 (8); 1 0 (0); 0

Ohio 50 11 (1); 9 5 (2); 4 16 (1); 3 0 (0); 0
Wisconsin 33 4 (0); 3 13 (3); 1 9 (1); 0 0 (0); 0

Total 341 91 (16); 79 74 (18); 54 99 (18); 21 0 (0); 0

Notes: Some counties were removed due to convergence issues, so the number of counties used

for testing does not add up to the 373 counties included in the soybeans data set. First number

is the number of rejections under each hypothesis. Number in parentheses is Holm-Bonferroni

significance under multiple testing. Number after semicolon is the number of rejections for

(i) δl ≤ 0; (ii) δu ≤ 0; (iii) δl ≥ δu; (iv) δλ ≥ 0. Tests (i), (ii), and (iii) carried out by

likelihood ratio test and Test (iv) by t-test. Test (iv) used jackknife standard errors to account

for estimated regressor.

4.3 Winter Wheat

Winter wheat estimates of δl and δu are summarized by state in Figures 4.9 and 4.10. It is

interesting to note that the estimates of δl are predominantly negative in Kansas and all

positive in Michigan. The estimates of δu are fairly equally spread between negative and

positive in Kansas, but again are predominantly positive in Michigan. Maps in Figures

7.5 and 7.6 in the Appendix show the geographical distribution of these estimates.

Figures 4.11a and 4.11b illustrate these contrasting results for Kansas and Michigan.

Figure 4.11a shows winter wheat yields in Phillips County, Kansas, where the rate of

technological change in both the lower and the upper components decreased after 1995.

In contrast, in Isabella County, Michigan, shown in Figure 4.11b, the rate of technological

change after 1995 increased in both components. Thus, Michigan winter wheat estimates

of δl and δu are more similar to corn and soybeans estimation results than Kansas winter
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Figure 4.9: Estimates of δl for winter wheat counties by state. Red line at zero is
drawn for reference to make it easier to distinguish between negative and
positive values.
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Figure 4.10: Estimates of δu for winter wheat counties by state. Red line at zero is
drawn for reference to make it easier to distinguish between negative
and positive values.

47



(a) Phillips County, Kansas (b) Isabella County, Michigan
Figure 4.11: Winter wheat model estimation results for two representative winter

wheat counties. Note the changes in the slopes of both components
after 1995.

wheat.

Figure 4.12 shows the probability of the lower component in Kansas and Michigan

counties (also see the map in Figure 7.9 in the Appendix). These estimates are fairly

similar in both states, with slightly higher variability in Kansas. Similar to corn and

soybeans, the majority of the estimates range from 0.1 to 0.4.

The hypothesis tests results are reported in Table 4.3. In Kansas, over one-third of

counties had statistically significant non-zero δj’s. In these counties, δl’s were predom-

inantly negative; δu’s were both positive and negative. All δl’s were smaller than δu’s.

In Michigan, half of counties had δl and δu significantly different from zero. Both δj’s

were positive in these counties, and δl’s were larger than δu’s. None of the δλ’s were

significantly different from zero.
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Figure 4.12: Probability of a low yield, (1− λt), for winter wheat counties by state.

Table 4.3: Winter wheat – number of hypothesis test rejections and direction of
estimated effect.

State N δl = 0 δu = 0 δl = δu δλ = 0

Kansas 32 12 (2); 2 6 (2); 4 6 (1); 6 0 (0); 0
Michigan 21 9 (5); 9 6 (0); 6 11 (1); 0 0 (0); 0

Total 53 21 (7); 11 12 (2); 10 17 (2); 6 0 (0); 0

Notes: Some counties were removed due to convergence issues, so the number of counties

used for testing does not add up to the 64 counties included in the winter wheat data set.

First number is the number of rejections under each hypothesis. Number in parentheses is

Holm-Bonferroni significance under multiple testing. Number after semicolon is the number

of rejections for (i) δl ≤ 0; (ii) δu ≤ 0; (iii) δl ≥ δu; (iv) δλ ≥ 0. Tests (i), (ii), and (iii) carried

out by likelihood ratio test and Test (iv) by t-test. Test (iv) used jackknife standard errors to

account for estimated regressor.
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4.4 Attribution Model Results

Recall that the aim of the attribution model is to use spatial (i.e. non-temporal) variation

to identify whether any of the estimated changes in the rates of technological change

after the subsidization increase are attributable to climatic variation. The significance

of the coefficients on the climate trend variables within the attribution model can be

interpreted as follows: with the temporal aspect conditioned out, how much of the

spatial variation in the change of rate of technological change is explained by the spatial

variation in climate variables? Insignificant coefficients would imply that most of the

effect estimated by the crop yield model is attributable to factors other than climate,

e.g. policy change. The following subsections summarize the attribution model results

for each of the three crops.9

4.4.1 Corn

Table 4.4 shows the results of the attribution model for δl regressed on climate trend

variables. Five of the six estimated trend coefficients are significant: GDD and VPD at

one percent, HDD and PCP at five percent, and PCPja at ten percent. The direction of

estimated effects for each trend variable is as expected. When I corrected for estimated

regressors using the jackknife standard errors (shown in Table 4.4), the estimated co-

efficient on GDD remained significant at ten percent. This may possibly suggest that

some of the lower tail effect picked up through the crop yield model is attributable to

spatial variation in growing degree days, i.e. not only the subsidy increase was driving

increased innovation in the lower tail but also an increase in growing degree days. When

9Not all counties in the crop yield data could be paired up with climate data due to missing data in
the climate data set. This required the removal of 7 corn counties, 8 soybean counties, and 23 winter
wheat counties (in addition to counties previously removed due to convergence issues).
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δu – upper tail effect – was regressed on climate trends, four of the estimated coefficients

were significant: GDD, HDD and VPD at one percent, and PCPja at ten percent (Ta-

ble 4.5). Two of them remained significant when jackknife standard errors were used

to correct for the estimated regressors: GDD at one percent and HDD at five percent.

It is surprising that the estimated coefficient on HDD is significantly positive; I would

expect a greater number of extreme heat days to have a negative effect on the rate of

technological change in the upper tail (because extreme heat negatively impacts corn

yields).

Table 4.4: Corn – δl regressed on climate trends (R2 = 0.24).

Variable Estimate SE SEjack

GDD 1.334 0.257*** 0.965*
HDD -1.402 0.543** 2.021
VPD -2.290 0.729*** 2.063
VPDja -0.650 0.942 3.503
PCP 0.077 0.039** 0.149
PCPja -0.144 0.073* 0.257

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

Table 4.5: Corn – δu regressed on climate trends (R2 = 0.22).

Variable Estimate SE SEjack

GDD 0.849 0.095*** 0.288***
HDD 0.925 0.201*** 0.451**
VPD -1.786 0.270*** 0.758
VPDja 0.135 0.349 1.103
PCP -0.008 0.014 0.032
PCPja 0.051 0.027* 0.083

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

Note how the jackknife standard errors are several orders of magnitude greater than

the conventional standard errors. Also note that the increase in the jackknife stan-

dard errors relative to the conventional ones is larger for the lower component. This
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is expected since the crop yield model has identified a greater increase in the rate of

technological change in the lower component relative to the upper component. Thus, I

would expect that more of this change in the lower component was driven by the policy

change (increased subsidies) and not so much by climatic changes, relative to the upper

component. In the upper tail where the policy effect was not as great, it is expected

that a larger proportion (relative to the lower tail) of the change would be explained by

climatic variation.

It is somewhat surprising that regressing the estimated rates of technological change

in the lower and upper tails (βl and βu, respectively) on climate trend variables does

not show stronger climatic effects than in the previous two regressions (Tables 4.6 and

4.7). I would expect at least a part of the spatial differences in the rates of technological

change to be explained by spatial variation in climatic factors. However, when βl was

regressed on climatic trends, only GDD was significant at five percent, without correcting

for estimated regressors (Table 4.6). When βu was regressed on climatic variables, five

of the estimated coefficients were significant but only PCP remained significant with the

corrected standard errors (Table 4.7).

Table 4.6: Corn – βl regressed on climate trends (R2 = 0.07).

Variable Estimate SE SEjack

GDD -0.170 0.066** 0.457
HDD -0.052 0.140 0.700
VPD 0.269 0.188 0.934
VPDja -0.060 0.243 0.984
PCP 0.006 0.010 0.039
PCPja 0.009 0.019 0.066

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

When the probability of a low yield trend (βλ) was regressed on the climate trends, all

of the estimated coefficients except for the coefficient on precipitation in July and August
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Table 4.7: Corn – βu regressed on climate trends (R2 = 0.08).

Variable Estimate SE SEjack

GDD -0.086 0.035** 0.120
HDD -0.058 0.074 0.194
VPD 0.225 0.099** 0.290
VPDja -0.211 0.128* 0.390
PCP 0.022 0.005*** 0.012**
PCPja -0.026 0.010** 0.027

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

were highly significant (Table 4.8). However, none remained significant after correcting

for estimated regressors. The same was also true for the change in the probability of a

low yield after 1995 (δλ) regressed on climate trends: four of the variables were significant

without the corrected standard errors but failed to remain significant under jackknife

standard errors (Table 4.9). This is not surprising because the crop yield model did not

show a significant change in the probability of a low yield after 1995.

Table 4.8: Corn – βλ regressed on climate trends (R2 = 0.14).

Variable Estimate SE SEjack

GDD -0.00241 0.00041*** 0.00355
HDD -0.00298 0.00086*** 0.00398
VPD 0.00687 0.00115*** 0.00747
VPDja -0.00376 0.00149** 0.00708
PCP 0.00020 0.00006*** 0.00022
PCPja -0.00019 0.00012 0.00041

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

4.4.2 Soybeans

In the soybean attribution model where δl was regressed on climate trend variables, four

of the six estimated coefficients were significant: VDPja, PCP and PCPja at one percent,
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Table 4.9: Corn – δλ regressed on climate trends (R2 = 0.12).

Variable Estimate SE SEjack

GDD 0.00541 0.00127*** 0.01487
HDD 0.00402 0.00248 0.02070
VPD -0.01525 0.00333*** 0.03197
VPDja 0.00742 0.00430* 0.02394
PCP -0.00037 0.00017** 0.00066
PCPja 0.00006 0.00033 0.00206

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

and GDD at five percent (Table 4.10). Only one, PCP, remained significant at five

percent when corrected for estimated regressors with jackknife standard errors. When

δu was regressed on climate trends, four of the estimated coefficients were significant:

HDD, VPDja, PCP and PCPja, all at one percent (Table 4.11). With jackknife standard

errors, two of them remained significant: HDD at five percent and PCP at one percent.

As with the corn results, it is somewhat surprising to find that the estimated HDD effect

is significantly positive in the upper tail.

Table 4.10: Soybeans – δl regressed on climate trends (R2 = 0.09).

Variable Estimate SE SEjack

GDD 0.229 0.098** 0.244
HDD 0.086 0.210 0.654
VPD -0.164 0.239 0.617
VPDja -0.709 0.263*** 0.747
PCP 0.039 0.010*** 0.022**
PCPja -0.073 0.019*** 0.055

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

Again, note that the jackknife standard errors are several orders of magnitude greater

than the conventional standard errors, and that the increase in the jackknife standard

errors relative to the conventional ones is larger for the lower component. As with the

corn model, I would expect to see this since the soybean yield model has also identified

54



Table 4.11: Soybeans – δu regressed on climate trends (R2 = 0.33).

Variable Estimate SE SEjack

GDD 0.038 0.032 0.069
HDD 0.328 0.069*** 0.175**
VPD 0.036 0.078 0.207
VPDja -0.434 0.086*** 0.276
PCP 0.023 0.003*** 0.009***
PCPja -0.021 0.006*** 0.019

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

a greater increase in the rate of technological change in the lower component relative

to the upper component. The differences in the standard errors thus show that changes

in the lower component were more driven by increased subsidies relative to the upper

component and not as much by climatic changes. In the upper tail where the policy effect

was not as great, a larger proportion of the change is explained by climatic variation.

Also similar to corn, regressing the estimated βl and βu on climate trend variables

did not show stronger climatic effects than with the δj regressions, even though I would

expect at least a part of the spatial differences in the rates of technological change

to be explained by spatial variation in climatic factors. When βl was regressed on

climatic trends, VPDja was significant at one percent and PCP at five percent without

correcting for estimated regressors (Table 4.12), but neither remained significant with the

jackknife standard errors. The results were somewhat stronger when βu was regressed on

climatic variables, with four significant estimated coefficients: HDD, VPDja, and PCP

at one percent and VPD at five percent (Table 4.13). The PCP effect remained strongly

significant even with the correction for estimated regressors.

When the probability of a low yield trend (βλ) was regressed on the climate trends,

four of the variables were highly significant without the corrected standard errors (Table

4.14). However, none remained significant after correcting for estimated regressors.
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Table 4.12: Soybeans – βl regressed on climate trends (R2 = 0.05).

Variable Estimate SE SEjack

GDD 0.001 0.029 0.080
HDD 0.069 0.061 0.184
VPD -0.093 0.070 0.199
VPDja 0.231 0.077*** 0.205
PCP -0.008 0.003** 0.008
PCPja 0.006 0.006 0.019

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

Table 4.13: Soybeans – βu regressed on climate trends (R2 = 0.40).

Variable Estimate SE SEjack

GDD 0.005 0.015 0.022
HDD -0.098 0.032*** 0.052
VPD -0.085 0.036** 0.064
VPDja 0.291 0.040*** 0.081
PCP -0.009 0.002*** 0.003***
PCPja 0.005 0.003 0.005

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.
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The same was also true for the change in the probability of a low yield after 1995

(δλ) regressed on climate trends: all of the estimated coefficients except for HDD were

significant without the corrected standard errors but failed to remain significant under

jackknife standard errors (Table 4.15). As with corn, this is not surprising because the

crop yield model did not show a significant change in the probability of a low yield after

1995.

Table 4.14: Soybeans – βλ regressed on climate trends (R2 = 0.17).

Variable Estimate SE SEjack

GDD -0.00146 0.00060** 0.00342
HDD -0.00166 0.00128 0.00806
VPD 0.00508 0.00146*** 0.00804
VPDja -0.00439 0.00160*** 0.00435
PCP -0.00005 0.00006 0.00024
PCPja 0.00026 0.00012** 0.00032

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

Table 4.15: Soybeans – δλ regressed on climate trends (R2 = 0.17).

Variable Estimate SE SEjack

GDD 0.00457 0.00204** 0.00924
HDD 0.00595 0.00436 0.02191
VPD -0.01747 0.00496*** 0.02143
VPDja 0.02048 0.00546*** 0.01742
PCP 0.00037 0.00022* 0.00063
PCPja -0.00066 0.00040* 0.00107

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

4.4.3 Winter Wheat

My winter wheat data set consisted of two states, Kansas and Michigan, which are in

quite different geographic (and thus climatic) locations – Kansas is in the south and
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Michigan is in the north. Also, their crop yield model estimation results were very

different. Thus, it is interesting to use the attribution model to see how much of the

spatial variation is attributable to climatic changes.

When δl was regressed on climate trend variables, four variables were significant:

HDD and PCP at one percent, and GDD and PCPja at ten percent. Only one, PCP,

remained significant when jackknife standard errors were used to correct for estimated

regressors (Table 4.16). When δu was regressed on climate variables, VPD and VPDja

were significant at five percent without the correction for estimated regressors, and

VPDja remained significant at ten percent after the correction (Table 4.17). Just as

with corn and soybeans, notice how the jackknife standard errors are several orders

of magnitude greater than the conventional standard errors, and that the increase in

the jackknife standard errors relative to the conventional ones is larger for the lower

component. Again, these differences demonstrate that changes in the lower component

were more driven by increased subsidies and not as much by climate relative to the upper

component.

Table 4.16: Winter wheat – δl regressed on climate trends (R2 = 0.73).

Variable Estimate SE SEjack

GDD -0.050 0.027* 0.081
HDD 0.223 0.059*** 0.210
VPD 0.073 0.286 0.735
VPDja -0.498 0.781 1.778
PCP 0.130 0.044*** 0.097*
PCPja -0.182 0.105* 0.262

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

Similar to corn and soybeans, regressing the estimated βl and βu parameters on

climate trend variables did not show stronger climatic effects than with the δj regressions

(Tables 4.18 and 4.19). When the probability of a low yield trend, βλ, was regressed
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Table 4.17: Winter wheat – δu regressed on climate trends (R2 = 0.47).

Variable Estimate SE SEjack

GDD -0.031 0.023 0.041
HDD 0.039 0.050 0.100
VPD -0.571 0.240** 0.377
VPDja 1.475 0.655** 0.978*
PCP 0.061 0.037 0.053
PCPja -0.109 0.088 0.142

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

on the climate trends, only one variable was significant: GDD at five percent (Table

4.20). It did not remain significant after correcting for estimated regressors. When the

change in the probability of a low yield, δλ, was regressed on climate trends, none of the

estimated coefficients were significant (Table 4.21).

Table 4.18: Winter wheat – βl regressed on climate trends (R2 = 0.35).

Variable Estimate SE SEjack

GDD 0.016 0.009 0.018
HDD -0.042 0.020** 0.041
VPD 0.116 0.098 0.219
VPDja -0.369 0.268 0.474
PCP 0.013 0.015 0.029
PCPja 0.0004 0.036 0.067

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

Table 4.19: Winter wheat – βu regressed on climate trends (R2 = 0.71).

Variable Estimate SE SEjack

GDD 0.006 0.006 0.040
HDD 0.011 0.014 0.090
VPD 0.247 0.066*** 0.366
VPDja -0.749 0.181*** 0.977
PCP 0.035 0.010*** 0.039
PCPja -0.048 0.024 0.094

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

59



Table 4.20: Winter wheat – βλ regressed on climate trends (R2 = 0.45).

Variable Estimate SE SEjack

GDD -0.00034 0.00013** 0.00038
HDD 0.00038 0.00029 0.00062
VPD -0.00123 0.00139 0.00421
VPDja 0.00563 0.00378 0.01025
PCP -0.00014 0.00021 0.00061
PCPja 0.00064 0.00051 0.00128

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.

Table 4.21: Winter wheat – δλ regressed on climate trends (R2 = 0.26).

Variable Estimate SE SEjack

GDD 0.00072 0.00052 0.00161
HDD -0.00047 0.00114 0.00384
VPD 0.00518 0.00550 0.01186
VPDja -0.01777 0.01502 0.03081
PCP 0.00108 0.00085 0.00251
PCPja -0.00328 0.00202 0.00496

Note: * indicates significance at 10 percent, ** at five percent, and *** at one percent.
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Chapter 5 Economic Implications

5.1 Income and Risk Effects

Recall that higher crop insurance premium subsidies may have two effects on the rate

of technological change in crop production: an income effect and a risk effect. The in-

come effect is an overall increased rate of technological change resulting from a greater

willingness to adopt technologies and a greater supply of technologies. The risk effect

is an increased adoption of high-risk high-reward technologies at the expense of com-

peting risk-reducing technologies. I used the substantial increase of U.S. crop insurance

premium subsidies in the late 1990s as a natural experiment setting to empirically test

whether this policy change had an income effect or a risk effect, or both, on the rates of

technological change in the lower and upper tails of crop yield distributions.

My empirical analysis results indicate that an income effect from the increased subsi-

dies has possibly occurred in the United States crop production. The rates of technolog-

ical change in both the lower and the upper components have increased with the higher

subsidies in many counties across all three crops. Although statistical significance was

found for only a third of counties on average, these results nevertheless constitute strong

evidence of an income effect.10 The probability of a low yield over time, as measured by

the model, has not changed and was not affected by the increased subsidies.

The results of the climate attribution model suggest that the increases in the rates

10In fact, it was surprising to find significance in an entire third of the counties, considering that the
two-component mixture models were estimated from only 67 data points.
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of technological change post 1995 were not driven solely by changes in climate. It is true

that some of the estimated coefficients on the climate trend variables were statistically

significant even after correcting for estimated regressors. However, with a probability of

type one error of five percent, I would expect to see a true null hypothesis rejected in

five percent of tests – so about five or six tests of the total 108 tests that I performed

for corn, soybeans, and winter wheat. After correcting for estimated regressors, I found

significance at the five percent level in seven out of the 108 tests (6.5 percent) – just

slightly higher than the probability of type one error. Therefore, the results of the

attribution model are not strong enough to suggest that spatial variation in the estimated

income effect is attributable to climatic changes. With the climate effect ruled out in

this way, it is even more likely that the estimated changes in the rates of technological

change are evidence of an income effect driven by increased insurance premium subsidies.

Under the risk effect, one would expect to see a lower rate of technological change in

the lower tail of the yield distribution compared to the upper tail. My empirical analysis

does not find evidence of this in the United States crop production. In fact, I tend to find

the opposite: after the subsidy increase, technological change in the lower component

appears to have been increasing at a higher rate than in the upper component. The

likely reason for this is that the main available technologies are non-competing. An

example is genetically modified seeds with stacked traits. As was shown in Figure 2.5,

the adoption of drought-tolerant corn has been rapidly increasing since its introduction.

This is an example of a risk-reducing technology that is non-competing because the

drought-tolerant trait can be “stacked” on top of other desired traits in genetically

modified varieties. The rapid adoption of drought-tolerant corn supports my empirical

findings that there has not been a decrease in the adoption of risk-reducing technologies
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because they do not compete with riskier high-reward technologies.

It is interesting to note that the income and risk effects vary substantially across

states, suggesting that the policy change had differing effects based on geographic lo-

cation. This difference is particularly prominent in the winter wheat results. Although

my winter wheat data set consisted of only two states, these states are very different

because of their location: Kansas is in the south and Michigan is in the north. Southern

production regions are predicted be more severely impacted by a changing climate than

northern regions mainly because of the increased frequency of extreme heat in the south.

Thus, adaptation and technological change in the southern regions is particularly impor-

tant for sustaining production and building yield resiliency. The results of my analysis

indicate that higher subsidies possibly created a moral hazard problem in Kansas winter

wheat production, as producers may have reduced the use of technologies that can help

them mitigate the negative impacts of climate change and instead increased the use of

riskier technologies. As genetically modified varieties of winter wheat are not currently

commercially available, it is likely that no other non-competing risk-reducing technolo-

gies for winter wheat production in Kansas are available. Thus, higher subsidies may

have potentially incentivized producers to substitute high-risk technologies for the exist-

ing risk-reducing ones, and this may have resulted in the decreased rates of technological

change that my empirical analysis has been finding.

5.2 Implications for Crop Insurance Premiums

The differing rate of technological change resulting from the subsidization increase has

important implications for crop insurance premium rates. To illustrate this, I calculated

hypothetical premium rates for the year 2019 for each county using parameter estimates
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from my model. I also calculated premium rates using the same parameter estimates but

assuming that the rates of technological change have not changed – δl and δu are zero –

i.e. that there was no policy change (or no effect of the policy change). I then compared

the two premium rates to identify the effect of the changed rates of technological change

on premiums.

To calculate the premium rates, I looked at three levels of coverage – 70, 80, and 90

percent. The yield guarantee is equal to

yguar = ((1− λ)µl + λµu) ∗ pct (5.1)

where λ is the probability of the upper component, µl and µu are the lower and upper

component mean yields, respectively, in 2019 (µj = αj + βjt + δjtI[1995,T ](t)), and pct

is the chosen percentage coverage level (0.7, 0.8 or 0.9). The expected yield for each

component under yield loss is then

EYj = E[yj|yj < yguar] = µj − σj
φ(

yguar−µj
σj

)

Φ(
yguar−µj

σj
)

(5.2)

where σj is the variance of component j, φ(.) is the standard normal probability den-

sity function, and Φ(.) is the standard normal cumulative density function. Given the

expected yield for each component, the expected loss is

Expected Loss = yguar − E[y|y < yguar] (5.3)

where E[y|y < yguar] = (1− λ)EYl + λEYu (i.e. weighted mean of the expected yields),
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and the probability of a loss is

Ploss = (1− λ)P (yl < yguar) + λP (yu < yguar) (5.4)

Therefore, the actuarially fair premium rate is equal to the probability of a yield loss

times the expected yield loss, all divided by the yield guarantee:

Premium Rate =
Ploss ∗ Expected Loss

yguar
(5.5)

Figure 5.1 compares the insurance premium rates for 70 percent coverage level for

corn counties when the subsidy effect is taken into account and when it is assumed away.

Note that the figure has been truncated for better visual representation; the actual values

range from 0.0 to 7.4 percent in the boxplot on the left and from 0.0 to 14.0 percent in

the boxplot on the right. Figures 5.2a and 5.2b show the calculated premium rates for 80

and 90 percent coverage levels, respectively. Similar to Figure 5.1, the figures have been

truncated for a clearer comparison. The premium rates in Figure 5.2a range from 0.0

to 7.9 percent in the left boxplot and from 0.0 to 26.4 percent in the right boxplot, and

in Figure 5.2b from 0.0 to 9.0 percent in the left boxplot and from 0.2 to 34.9 percent

in the right boxplot. Notice how the insurance premium rates under the subsidy effect

are smaller on average than those that assume no effect, especially at the 90 percent

coverage level.

Figure 5.3 shows the calculated insurance premium rates for soybean counties. Again,

for a better visual comparison, the boxplots have been truncated. The actual calculated

values range from 0.0 to 1.4 percent in the left boxplot and from 0.0 to 3.4 percent

in the right boxplot. The premium rates for 80 and 90 percent coverage levels for
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Figure 5.1: Insurance premium rates for 70 percent coverage level for corn counties
in 2019, with and without subsidy effect. Note that the boxplots have
been truncated for better visual comparison.

(a) 80 percent coverage (b) 90 percent coverage
Figure 5.2: Insurance premium rates for (a) 80 and (b) 90 percent coverage levels

for corn counties in 2019, with and without subsidy effect. Note that the
boxplots have been truncated for better visual comparison.
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Figure 5.3: Insurance premium rates for 70 percent coverage level for soybean coun-
ties in 2019, with and without subsidy effect. Note that the boxplots
have been truncated for better visual comparison.

soybean counties are shown in Figures 5.4a and 5.4b, respectively. There was no need

to truncate either figure, as the boxplots in each figure were clearly comparable, and

thus the boxplots illustrate the full range of the calculated premium rates. Again, note

how the insurance premium rates that account for the subsidy effect are much smaller

on average than those that do not, at all coverage levels.

Figures 5.5, 5.6a, and 5.6b summarize the calculated premium rates for winter wheat

counties at 70, 80, and 90 percent coverage levels, respectively. The boxplots did not

need to be truncated as the calculated values did not range as much as the corn or

soybean rates. Just like with corn and soybeans, notice how the insurance premium

rates that account for the subsidy effect are smaller on average than those that assume

no effect, less so at the 70 percent coverage level and more so at the 80 and 90 percent
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(a) 80 percent coverage (b) 90 percent coverage
Figure 5.4: Insurance premium rates for (a) 80 and (b) 90 percent coverage levels

for soybean counties in 2019, with and without subsidy effect.

coverage levels.

Hypothetical premium rates for all three crops and three coverage levels were also

calculated ten years into the future for the year 2029. The results are shown in Fig-

ures 7.10 to 7.15b in the Appendix. Here, the differences between the premium rates

calculated with and without the subsidy effect are even more prominent, with the rates

accounting for the subsidy effect being much smaller on average than those that assume

the effect away. These differences highlight the implications that the subsidy effect has

for future insurance premium rates.

It is quite remarkable that for all three crops and three different coverage levels

the insurance premium rates calculated under the subsidy effect are smaller than the

premium rates without the subsidy effect. These results suggest that the subsidy increase

has been beneficial because it has resulted in lower premium rates, which are desirable in

several aspects: lower cost for producers, lower cost for government, and lower spending

of taxpayer money. This favourable effect of the policy change is occurring because the
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Figure 5.5: Insurance premium rates for 70 percent coverage level for winter wheat
counties in 2019, with and without subsidy effect.

(a) 80 percent coverage (b) 90 percent coverage
Figure 5.6: Insurance premium rates for (a) 80 and (b) 90 percent coverage levels

for winter wheat counties in 2019, with and without subsidy effect.
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income effect is dominating the risk effect. If instead the risk effect were significant and

dominating, the premium rates under the policy change would be greater than those

without the policy change, and thus the increased subsidies would have undesirable

implications for crop insurance premium rates.
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Chapter 6 Conclusions

Agricultural producers face an increasingly volatile and complex production environ-

ment, most notably because of changing climate, changing innovation, changing tech-

nology, and their complex interactions. The ability of growers to adapt to the changing

production environment and produce yields that are resilient to adverse weather events

and growing conditions is extremely important for meeting the world’s growing food

demand and addressing food security issues. While there are numerous ways to address

these challenges, agricultural innovation has been particularly successful especially over

the past century in enabling farmers to adapt to changing conditions and substantially

increase crop yields.

Most of the world’s agricultural crops, particularly in developed countries, are pro-

duced under heavily government-subsidized crop insurance programs. The United States

is no exception, as the Federal Crop Insurance Program is the cornerstone of domes-

tic farm policy and is heavily subsidized. In this context, understanding if and how

subsidized insurance affects producers’ decisions to adopt innovations is paramount to

meeting global food demand, mitigating the effects of climate change, and remaining

competitive. Currently, there is very little empirical literature looking at the effect of

crop insurance premium subsidies on innovation in crop production. Economic theory

would suggest that premium subsidies can have two effects on technological change: an

income effect and a risk effect. The income effect would have a positive impact on tech-

nological change, while the risk effect would have a negative impact. The magnitude of

the effects relative to each other would determine the overall dominating effect.
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In this thesis, I tested for the presence of these two effects in the United States corn,

soybean, and winter wheat production using the substantial increase in insurance subsi-

dization that occurred under the 1994 Federal Crop Insurance Reform and Department

of Agriculture Reorganization Act and the 2000 Agricultural Risk Protection Act. Un-

der these two Acts, subsidies on crop insurance premiums were increased from only 30

percent to 60 percent on average. My results find evidence of the income effect but not

the risk effect in corn and soybean yields. This is reassuring because it suggests that the

high subsidies are not impeding technological change and are not creating a moral haz-

ard issue. In fact, the results suggest that the higher subsidies have actually increased

the rate of technological change, particularly in the lower tail. The main reason for the

absence of the risk effect is that the main existing risk-reducing technologies are not

competing with high-risk high-reward technologies, i.e. the adoption of one technology

does not preclude the adoption of another. An example of this is stacked traits in ge-

netically modified seeds. The risk effect may have been present and more prominent if

the technologies were competing. Since this is not the case, the income effect has been

dominating and driving the rate of technological change up.

Statistically significant increases in the rates of technological change in both tails

of the yield distribution have been found across one-third of corn and soybean counties

on average. These are fairly strong results, especially when considering that the two-

component crop yield model was estimated with only 67 data points per county. The

attribution model results demonstrated that while spatial variation in climatic factors

may explain part of the increases in the rates of technological change, particularly in

the upper tail, most of the increases were likely driven by the policy change. This result

serves as a confirmation for the presence of a strong beneficial income effect induced
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by higher subsidies. Although one may argue that the income effect was not induced

solely by higher subsidies and that there could have been other contributing factors,

the natural experiment type of setting that I am looking at supports my conclusions.

There has been a substantial increase in premium subsidies at a particular point in time,

and, with the climate effects ruled out through the attribution model, it is appropriate

to attribute the identified changes in the rates of technological change to this policy

change. In fact, it would be surprising to find no income effect from increased subsidies,

considering how important the crop insurance program is and how much of the subsidy

actually stays with the producers.

In Kansas winter wheat production, however, I found decreased rates of technologi-

cal change after the subsidization increase, which is alarming because Kansas, being a

southern state, will be most impacted by the increased frequency of extreme heat and

drought. Considering how contrasting the winter wheat results were due to the inclu-

sion of only two states, a potential next step for extending this research is to expand

the number of winter wheat states, as well as to include other types of wheat in the

analysis. Because wheat production has seen less innovation than corn or soybeans over

the past few decades (e.g. there is currently no commercially available genetically mod-

ified wheat), it would provide an interesting, and potentially contrasting, comparison to

other crops in terms of the subsidy effect.

In summary, this thesis is among the first to address the question of how high crop

insurance premium subsidies influence technological change in crop production. The em-

pirical analysis provides strong evidence that higher subsidies have increased the rates

of technological change in the United States corn and soybean production. There ap-

pears to be no evidence of a moral hazard effect, primarily because most of the available
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technologies are non-competing. Because crop insurance in Canada is also heavily sub-

sidized, an interesting extension to this thesis would be to perform a similar analysis

using Canadian crop yield data and to compare the results to the United States. This

may provide insights on whether similar policies and policy changes have similar effects

in the two countries.
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Chapter 7 Appendix

7.1 Corn Model Parameter Estimates

Table 7.1: Illinois corn county model parameter estimates (71 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.276 0.735 0.880 0.812 0.926 0.971

αu 23.281 46.276 57.749 53.614 61.997 74.627

αl 1.241 38.375 56.966 48.602 61.559 74.627

βu 1.367 1.755 1.917 1.935 2.029 2.597

βl −0.426 0.358 1.013 0.963 1.527 2.074

δu −1.072 −0.193 0.219 0.291 0.673 1.897

δl −5.414 −1.224 0.044 0.056 1.493 5.883

σu 2.310 10.242 13.272 12.034 14.647 17.211

σl 0.0004 3.780 10.101 10.902 17.220 24.217
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Table 7.2: Indiana corn county model parameter estimates (60 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.588 0.746 0.829 0.804 0.878 0.959

αu 37.563 46.003 51.566 50.548 55.024 62.265

αl 8.338 44.948 50.627 49.081 55.024 62.265

βu 1.450 1.859 2.013 1.966 2.078 2.261

βl 0.002 0.822 1.193 1.099 1.373 2.119

δu −1.484 −0.594 −0.293 −0.280 0.057 0.653

δl −4.134 −1.512 −0.399 −0.526 0.814 4.231

σu 5.281 8.053 10.548 10.124 11.933 14.591

σl 1.760 7.322 12.494 11.730 15.801 25.278

Table 7.3: Iowa corn county model parameter estimates (86 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.342 0.788 0.889 0.822 0.926 0.979

αu 36.408 47.614 51.593 51.298 54.817 66.798

αl 5.791 40.757 50.528 46.800 54.784 66.798

βu 1.604 1.927 2.035 2.035 2.136 2.770

βl −0.160 0.614 0.908 0.964 1.356 2.229

δu −1.483 −0.096 0.390 0.351 0.745 1.914

δl −0.631 1.148 2.041 2.148 3.217 6.071

σu 3.001 8.880 10.616 10.533 12.335 17.801

σl 0.0002 4.531 11.439 11.505 17.249 30.103
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Table 7.4: Minnesota corn county model parameter estimates (51 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.406 0.702 0.805 0.770 0.867 0.943

αu 19.194 31.900 42.901 40.342 48.493 57.109

αl 18.376 31.900 38.739 38.775 46.814 57.109

βu 1.295 1.909 2.008 1.997 2.164 2.441

βl −0.058 0.623 0.819 0.925 1.089 1.997

δu −0.262 0.283 0.843 0.786 1.201 2.562

δl −0.455 2.172 3.225 3.198 4.266 6.599

σu 3.454 7.050 9.041 8.719 10.376 12.765

σl 0.498 6.881 11.589 11.086 14.415 28.728

Table 7.5: Ohio corn county model parameter estimates (57 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.389 0.652 0.738 0.730 0.857 0.941

αu 36.183 46.022 49.636 48.977 51.626 56.543

αl 22.929 45.234 49.444 48.245 51.545 56.142

βu 1.217 1.800 1.957 1.926 2.100 2.276

βl 0.106 0.894 1.177 1.108 1.345 1.814

δu −1.185 −0.604 −0.271 −0.209 0.026 1.728

δl −2.677 −0.065 0.462 0.433 0.904 4.035

σu 2.912 7.096 8.286 8.381 9.689 13.598

σl 0.981 6.887 11.803 11.293 15.926 22.614
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Table 7.6: Wisconsin corn county model parameter estimates (48 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.252 0.644 0.808 0.760 0.909 0.977

αu 33.666 45.026 52.283 51.464 58.160 64.601

αl 25.489 41.403 49.674 48.584 57.362 64.601

βu 1.215 1.514 1.626 1.627 1.779 2.036

βl −0.072 0.518 0.872 0.833 1.184 1.642

δu −0.836 −0.116 0.345 0.358 0.773 1.600

δl −1.623 0.495 1.090 1.102 1.884 3.529

σu 1.802 6.549 8.499 8.225 10.383 12.424

σl 0.033 4.156 9.019 8.372 12.776 19.267

Table 7.7: South Dakota corn county model parameter estimates (23 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.595 0.747 0.868 0.829 0.915 0.956

αu 9.181 12.848 16.415 18.939 25.231 35.881

αl 0.843 11.928 16.415 18.124 23.442 35.881

βu 1.050 1.314 1.596 1.540 1.727 1.998

βl −0.404 0.538 0.655 0.669 0.877 1.142

δu 1.128 1.603 1.857 1.904 2.228 2.669

δl −3.418 −0.409 1.528 1.445 3.557 5.214

σu 8.852 10.490 11.957 12.129 13.876 16.273

σl 1.434 2.517 5.550 6.208 10.424 13.445
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7.2 Soybean Model Parameter Estimates

Table 7.8: Illinois soybean county model parameter estimates (71 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.222 0.684 0.855 0.769 0.908 0.969

αu 14.951 19.483 24.568 23.242 26.389 28.738

αl 3.556 15.711 21.170 20.085 24.806 28.738

βu 0.265 0.376 0.406 0.414 0.446 0.693

βl −0.095 0.110 0.271 0.227 0.331 0.617

δu −0.263 0.159 0.229 0.235 0.302 0.601

δl −0.721 0.060 0.426 0.461 0.865 1.463

σu 0.399 2.421 2.860 2.775 3.168 4.666

σl 0.242 1.555 2.611 2.823 4.116 6.614
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Table 7.9: Indiana soybean county model parameter estimates (55 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.303 0.584 0.675 0.711 0.890 0.985

αu 14.960 19.609 21.224 21.451 23.490 27.878

αl 3.156 17.824 20.088 19.605 22.287 26.291

βu 0.346 0.454 0.494 0.491 0.531 0.598

βl −0.006 0.228 0.312 0.312 0.398 0.664

δu −0.231 −0.091 0.026 0.039 0.145 0.475

δl −1.075 −0.130 0.267 0.174 0.488 1.209

σu 1.105 2.287 2.826 2.804 3.272 4.177

σl 0.00000 1.821 3.144 2.729 3.536 5.285

Table 7.10: Iowa soybean county model parameter estimates (84 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.344 0.708 0.861 0.793 0.917 0.977

αu 13.249 20.076 22.632 21.942 24.209 27.943

αl 10.285 17.797 20.560 20.196 22.765 26.448

βu 0.296 0.437 0.493 0.503 0.533 0.757

βl −0.062 0.162 0.265 0.264 0.370 0.663

δu −0.440 −0.086 0.015 0.009 0.095 0.401

δl −1.480 0.031 0.228 0.258 0.527 1.415

σu 0.963 2.588 3.018 2.913 3.354 4.158

σl 0.0005 1.612 3.517 3.090 4.203 6.815
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Table 7.11: Minnesota soybean county model parameter estimates (48 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.086 0.633 0.734 0.706 0.790 0.985

αu 9.154 12.412 15.721 15.797 19.160 21.532

αl 2.535 11.260 15.433 14.513 17.887 21.532

βu 0.392 0.474 0.506 0.509 0.530 0.746

βl −0.216 0.146 0.226 0.228 0.312 0.546

δu −0.230 −0.044 0.042 0.051 0.124 0.309

δl −0.356 0.347 0.682 0.625 0.925 1.586

σu 1.105 2.586 3.039 3.054 3.428 5.103

σl 0.00000 1.762 2.566 2.377 3.187 4.978

Table 7.12: Ohio soybean county model parameter estimates (50 counties).

Parameters Min 1st Qu Median Mean 3rd Qu Max

λt 0.395 0.608 0.718 0.714 0.841 0.919

αu 14.415 18.692 20.432 20.225 21.590 26.650

αl 10.210 17.808 19.911 19.379 21.153 25.036

βu 0.352 0.436 0.488 0.474 0.513 0.581

βl −0.040 0.213 0.290 0.254 0.329 0.465

δu −0.278 −0.069 0.032 0.027 0.098 0.306

δl −0.747 −0.111 0.170 0.202 0.486 1.102

σu 1.464 2.234 2.622 2.719 3.225 4.465

σl 0.370 1.470 2.414 2.398 3.395 4.602
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Table 7.13: Wisconsin soybean county model parameter estimates (33 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.338 0.566 0.704 0.707 0.871 0.935

αu 8.587 10.808 11.500 11.983 13.231 16.766

αl 1.384 10.808 11.500 11.711 13.231 16.766

βu 0.442 0.594 0.631 0.633 0.666 0.813

βl 0.031 0.295 0.363 0.345 0.422 0.492

δu −0.581 −0.268 −0.161 −0.180 −0.073 0.330

δl −0.488 −0.094 0.084 0.115 0.269 0.871

σu 1.857 3.076 3.352 3.369 3.729 5.019

σl 0.385 1.433 3.251 2.863 3.795 5.154

92



7.3 Winter Wheat Model Parameter Estimates

Table 7.14: Kansas winter wheat county model parameter estimates (32 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.346 0.617 0.752 0.734 0.899 0.956

αu 12.155 16.456 19.817 19.474 21.687 26.993

αl 4.853 12.677 17.690 16.754 21.343 26.993

βu 0.230 0.377 0.482 0.485 0.587 0.906

βl −0.150 0.061 0.355 0.252 0.399 0.507

δu −1.223 −0.430 −0.159 −0.150 0.107 1.085

δl −1.594 −0.885 −0.257 −0.371 0.119 1.078

σu 3.634 5.290 5.931 6.055 6.546 8.537

σl 0.00003 1.661 3.900 4.466 6.395 13.247
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Table 7.15: Michigan winter wheat county model parameter estimates (21 counties).

Parameter Min 1st Qu Median Mean 3rd Qu Max

λt 0.020 0.325 0.605 0.548 0.716 0.956

αu 22.687 25.499 26.978 26.937 28.436 29.738

αl 22.687 25.271 26.978 26.900 28.436 29.738

βu 0.504 0.615 0.691 0.687 0.759 0.875

βl 0.031 0.267 0.383 0.350 0.418 0.530

δu −0.169 0.224 0.386 0.383 0.576 1.009

δl 0.318 0.705 0.917 0.940 1.160 1.630

σu 0.407 4.356 4.731 4.664 5.168 9.819

σl 0.459 2.899 4.075 3.446 4.607 5.531
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7.4 Maps

Figure 7.1: Corn: change in the rate of technological change in the upper component
after 1995 (δu).
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Figure 7.2: Corn: change in the rate of technological change in the lower component
after 1995 (δl).
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Figure 7.3: Soybeans: change in the rate of technological change in the upper com-
ponent after 1995 (δu).
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Figure 7.4: Soybeans: change in the rate of technological change in the lower com-
ponent after 1995 (δl).
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Figure 7.5: Winter wheat: change in the rate of technological change in the upper
component after 1995 (δu).
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Figure 7.6: Winter wheat: change in the rate of technological change in the lower
component after 1995 (δl).
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Figure 7.7: Corn: probability of a low yield (1− λt).
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Figure 7.8: Soybeans: probability of a low yield (1− λt).
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Figure 7.9: Winter wheat: probability of a low yield (1− λt).
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7.5 Insurance Premium Rates for 2029

Figure 7.10: Insurance premium rates for 70 percent coverage level for corn counties
in 2029, with and without subsidy effect. Note that the boxplots have
been truncated for better visual comparison.
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(a) 80 percent coverage (b) 90 percent coverage
Figure 7.11: Insurance premium rates for (a) 80 and (b) 90 percent coverage levels

for corn counties in 2029, with and without subsidy effect. Note that
the boxplots have been truncated for better visual comparison.

Figure 7.12: Insurance premium rates for 70 percent coverage level for soybean coun-
ties in 2029, with and without subsidy effect. Note that the boxplots
have been truncated for better visual comparison.
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(a) 80 percent coverage (b) 90 percent coverage
Figure 7.13: Insurance premium rates for (a) 80 and (b) 90 percent coverage levels

for soybean counties in 2029, with and without subsidy effect. Note
that the boxplots have been truncated for better visual comparison.

Figure 7.14: Insurance premium rates for 70 percent coverage level for winter wheat
counties in 2029, with and without subsidy effect.
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(a) 80 percent coverage (b) 90 percent coverage
Figure 7.15: Insurance premium rates for (a) 80 and (b) 90 percent coverage levels

for winter wheat counties in 2029, with and without subsidy effect.

7.6 R code

##### Penalized maximum likelihood functions #####

#County unrestricted model

ll .func.pn <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[3]+parm[5]∗time+parm[7]∗indic, parm[8])

+parm[1]∗dnorm(yield, parm[2]+parm[4]∗time+parm[6]∗indic, parm[9])))−penalty

∗((1−parm[1])−0)ˆ2)

}

ll .func <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[3]+parm[5]∗time+parm[7]∗indic, parm[8])

+parm[1]∗dnorm(yield, parm[2]+parm[4]∗time+parm[6]∗indic, parm[9]))))

}

ll .func.pn.r <− function(parm){
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−(sum(log((1−parm[1])∗dnorm(yield, parm[2]+parm[4]∗time+parm[6]∗indic, parm[7])

+parm[1]∗dnorm(yield, parm[2]+parm[3]∗time+parm[5]∗indic, parm[8])))−penalty

∗((1−parm[1])−0)ˆ2)

}

ll .func.r <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[2]+parm[4]∗time+parm[6]∗indic, parm[7])

+parm[1]∗dnorm(yield, parm[2]+parm[3]∗time+parm[5]∗indic, parm[8]))))

}

#County restricted model

#Both deltas zero

ll .func.pnR <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[3]+parm[5]∗time, parm[6])+parm[1]∗

dnorm(yield, parm[2]+parm[4]∗time, parm[7])))−penalty∗((1−parm[1])−0)ˆ2)

}

ll .funcR <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[3]+parm[5]∗time, parm[6])+parm[1]∗

dnorm(yield, parm[2]+parm[4]∗time, parm[7]))))

}

ll .func.pnR.r <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[2]+parm[4]∗time, parm[5])+parm[1]∗

dnorm(yield, parm[2]+parm[3]∗time, parm[6])))−penalty∗((1−parm[1])−0)ˆ2)

}

ll .funcR.r <− function(parm){
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−(sum(log((1−parm[1])∗dnorm(yield, parm[2]+parm[4]∗time, parm[5])+parm[1]∗

dnorm(yield, parm[2]+parm[3]∗time, parm[6]))))

}

#Equal deltas

ll .func.pnR <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[3]+parm[5]∗time+parm[6]∗indic, parm[7])

+parm[1]∗dnorm(yield, parm[2]+parm[4]∗time+parm[6]∗indic, parm[8])))−penalty

∗((1−parm[1])−0)ˆ2)

}

ll .funcR <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[3]+parm[5]∗time+parm[6]∗indic, parm[7])

+parm[1]∗dnorm(yield, parm[2]+parm[4]∗time+parm[6]∗indic, parm[8]))))

}

ll .func.pnR.r <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[2]+parm[4]∗time+parm[5]∗indic, parm[6])

+parm[1]∗dnorm(yield, parm[2]+parm[3]∗time+parm[5]∗indic, parm[7])))−penalty

∗((1−parm[1])−0)ˆ2)

}

ll .funcR.r <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[2]+parm[4]∗time+parm[5]∗indic, parm[6])

+parm[1]∗dnorm(yield, parm[2]+parm[3]∗time+parm[5]∗indic, parm[7]))))

}

#Lower delta zero

ll .func.pnR <− function(parm){
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−(sum(log((1−parm[1])∗dnorm(yield, parm[3]+parm[5]∗time, parm[7])+parm[1]∗

dnorm(yield, parm[2]+parm[4]∗time+parm[6]∗indic, parm[8])))−penalty∗((1−

parm[1])−0)ˆ2)

}

ll .funcR <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[3]+parm[5]∗time, parm[7])+parm[1]∗

dnorm(yield, parm[2]+parm[4]∗time+parm[6]∗indic, parm[8]))))

}

ll .func.pnR.r <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[2]+parm[4]∗time, parm[6])+parm[1]∗

dnorm(yield, parm[2]+parm[3]∗time+parm[5]∗indic, parm[7])))−penalty∗((1−

parm[1])−0)ˆ2)

}

ll .funcR.r <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[2]+parm[4]∗time, parm[6])+parm[1]∗

dnorm(yield, parm[2]+parm[3]∗time+parm[5]∗indic, parm[7]))))

}

#Upper delta zero

ll .func.pnR <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[3]+parm[5]∗time+parm[6]∗indic, parm[7])

+parm[1]∗dnorm(yield, parm[2]+parm[4]∗time, parm[8])))−penalty∗((1−parm[1])

−0)ˆ2)

}

ll .funcR <− function(parm){
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−(sum(log((1−parm[1])∗dnorm(yield, parm[3]+parm[5]∗time+parm[6]∗indic, parm[7])

+parm[1]∗dnorm(yield, parm[2]+parm[4]∗time, parm[8]))))

}

ll .func.pnR.r <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[2]+parm[4]∗time+parm[5]∗indic, parm[6])

+parm[1]∗dnorm(yield, parm[2]+parm[3]∗time, parm[7])))−penalty∗((1−parm[1])

−0)ˆ2)

}

ll .funcR.r <− function(parm){

−(sum(log((1−parm[1])∗dnorm(yield, parm[2]+parm[4]∗time+parm[5]∗indic, parm[6])

+parm[1]∗dnorm(yield, parm[2]+parm[3]∗time, parm[7]))))

}

##### Jackknife standard errors function #####

SE.jack <− function(d){

((length(d)−1)∗var(d))ˆ0.5

}

##### Crop yield model #####

crop <− corn

#crop <− soy

#crop <− wheat

statel <− length(crop[,2])

ustate <− unique(crop[,2])

ustatel <− length(ustate)

time <− seq(1:67)
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statesdata <− subset(crop, crop[,2]==ustate[1])

ctyl <− length(statesdata[,4])

ucty <− unique(statesdata[,4])

uctyl <− length(ucty)

all . coef .unrest <− matrix(NA, uctyl, 9)

w2 coef <− matrix(NA, uctyl, 6) #omega regression coefficients for each county

for (k in 1:uctyl){

ctydata <− subset(statesdata, statesdata[,4]==ucty[k])

#ctydata <− subset(statesdata, statesdata[,4]==ucty[29])

year <− ctydata[,1]

yield <− ctydata[,5]

n <− length(yield)

indic <− year−1995

indic [ indic<0] <− 0

#Creating the indicator matrix, 1st set of rows for upper, 2nd for lower:

indicmat <− rbind(cbind(indic, rep(0,n)), cbind(rep(0,n), indic))

st . yields <− c(yield, yield) #yields

#Creating the X matrix, 1st set of rows for upper, 2nd for lower:

Xmat <− rbind(cbind(rep(1,n), rep(0,n), seq(1:n), rep(0,n)), cbind(rep(0,n), rep(1,n

), rep(0,n), seq(1:n)))

#Unrestricted model

T <− length(st.yields) #length of county yields doubled

m <− 500

tol <− 0.001
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conv <− 0

it .conv <− 0

like <− it.conv.fin <− rep(0,10)

coef . fin <− matrix(0,10,9) #Saving mw, two alphas, two betas, two deltas, s1, s2

like [1] <− −99999999

for (z in 2:10){

coef <− matrix(0,m,9) #this will save all coefficients from all iterations

all . ll <− matrix(NA,m,2) #saving all the likelihoods

all .w2 <− matrix(NA, m, n) #saving the lower omegas

result <− rq(st.yields˜Xmat+indicmat−1, z/20)

w <− rep(1,T)

w[ result$residuals<0] <− 0

w1 <− w[1:(T/2)]

w2 <− 1−w1

w <− c(w1,w2)

temp.a <− 10 #temporary difference between iterations until j>10

conv <− 0

j <− 1

while (conv<1){

result .both <− lm(st.yields˜Xmat+indicmat−1, weights=w)

au <− result.both$coefficients [1]

al <− result.both$coefficients [2]

bu <− result.both$coefficients [3]

bl <− result.both$coefficients [4]
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du <− result.both$coefficients [5]

dl <− result.both$coefficients [6]

if (al>au){

Xmat R <− rbind(cbind(rep(1,n),seq(1:n),rep(0,n)),cbind(rep(1,n),rep(0,n),seq(1:n)))

result .both <− lm(st.yields˜Xmat R+indicmat−1,weights=w)

au <− al <− result.both$coefficients[1]

bu <− result.both$coefficients [2]

bl <− result.both$coefficients [3]

du <− result.both$coefficients [4]

dl <− result.both$coefficients [5]

}

reg. coef <− c(au,al,bu,bl,du,dl)

mul <− result.both$fitted.values [(( T/2)+1):T] #lower fitted values

muu <− result.both$fitted.values[1:(T/2)] #upper fitted values

s1 <− (sum(w[((T/2)+1):T]∗((st.yields[((T/2)+1):T]−mul)ˆ2))/(sum(w[((T/2)+1):T

])))ˆ0.5 #lower standard deviation

s2 <− (sum(w[1:(T/2)]∗((st.yields[1:(T/2)]−muu)ˆ2))/(sum(w[1:(T/2)])))ˆ0.5 #

upper standard deviation

mw <− mean(w[1:(T/2)]) #mean weight (for upper)

p1 <− dnorm(st.yields[((T/2)+1):T], mul, s1) #probability of lower mixture

p2 <− dnorm(st.yields[1:(T/2)], muu, s2) #probability of upper mixture

w <− p2/(p1+p2) #updated weights

w1 <− w

w2 <− 1−w1
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w <− c(w1,w2)

all .w2[j ,] <− w2 #saving the lower omegas from this iteration

coef [ j ,] <− c(mw,reg.coef,s1,s2) #saving coefficients from this iteration

if (j>10) temp.a <− sum(abs(coef[j,]−coef[j−1,]))

all . ll [ j ,1] <− sum(log((1−mw)∗dnorm(st.yields[((T/2)+1):T],mul,s1)+mw∗dnorm(

st.yields[1:(T/2)],muu,s2)))

#Detecting crossovers:

Xover <− (muu[1]−mul[1])∗(muu[67]−mul[67])

if (Xover<0) temp.a <− 10

#all. ll [ j ,2] <− ifelse(Xover<0,0,1)

if (al<0) temp.a <− 10

if (s1<(0.10∗s2)) temp.a <− 10

all . ll [ j ,2] <− ifelse(temp.a==0,0,1)

#If difference is less than tolerance level , stop loop, save iteration :

conv <− ifelse(temp.a<tol,1,0)

it .conv <− ifelse(temp.a<tol,j,0)

j <− j+1

if (j>m) conv <− 1 #stop after 500 iterations

}

mw <− mean(w[1:(T/2)]) #mean weight for upper

#like[z] <− sum(log((1−mw)∗dnorm(st.yields[((T/2)+1):T],mul,s1)+mw∗dnorm(st.

yields[1:(T/2)],muu,s2))) #loglikelihood for this quantile

xover. ll <− all. ll [,1]

xover. ll <− xover.ll[ all . ll [,2]>0]
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xx <− which.max(xover.ll)

like [z] <− xover.ll[xx]

#coef.fin [z ,] <− c(mw, reg.coef, s1, s2)

coef . fin [z ,] <− coef[xx,]

it .conv.fin [z] <− it.conv #iteration on which convergence occurred

}

ii <− which.max(like) #maximum loglikelihood

coef .new <− coef.fin[ii ,] #ll.func.pn input parameters

omegas <− all.w2[ii,] #lower omegas for each county

omega.reg <− lm(omegas˜time+indic)

save <− summary(omega.reg)

w2 coef[k ,1] <− save$coefficients [2,1]

w2 coef[k ,2] <− save$coefficients [2,2]

w2 coef[k ,3] <− save$coefficients [2,4]

w2 coef[k ,4] <− save$coefficients [3,1]

w2 coef[k ,5] <− save$coefficients [3,2]

w2 coef[k ,6] <− save$coefficients [3,4]

#This code determines the ”optimal” penalty on mle:

if (au==al) coef.new <− coef.new[−3]

if (length(coef .new)==9){

parm <− coef.new

parm[1] <− pmin(1,coef.new[1]) #make the lambda the min of mw and 1 (so that it

is not greater than one)

ll <− rep(99999999, 50)
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trial <− matrix(0, 50, length(coef.new))

for (f in 1:50){

penalty <− f

result .opt <− optim(parm,ll.func.pn)

coef .opt <− result.opt$par

ll [ f ] <− ll.func(coef .opt)

if (abs(coef .opt [1])>1) ll [ f ] <− 99999999

if (coef .opt[2]<0) ll [ f ] <− 99999999

if (coef .opt[3]<0) ll [ f ] <− 99999999

if (coef .opt[8]<(0.10∗coef.opt [9]) ) ll [ f ] <− 999999999

fit .up <− coef.opt[2]+coef.opt[4]∗time+coef.opt[6]∗indic

fit .lw <− coef.opt[3]+coef.opt[5]∗time+coef.opt[7]∗indic

Xover <− (fit.up[1]−fit.lw [1])∗( fit .up[67]−fit .lw[67])

if (Xover<0) ll[f ] <− 99999999

trial [ f ,] <− result.opt$par #can also do trial[f ,] <− coef.opt

}

penalty <− which.min(ll) #”optimal” penalty

result .opt <− optim(parm,ll.func.pn) #re−estimating with the optimal penalty

coef .opt <− result.opt$par #coefficient estimates from this re−estimation

llnew <− ll.func(coef .new)

llopt <− ll.func(coef .opt)

llboth <− c(llnew,llopt)

ee <− which.min(llboth)

LRunrest <− llboth[ee]
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if (ee==1){

all . coef .unrest[k ,] <− coef.new

}

if (ee==2){

all . coef .unrest[k ,] <− coef.opt

}

if (coef .opt[3]>coef.opt [2]){

for (z in 2:10){

coef <− matrix(0,m,9) #this will save all coefficients from all iterations

all . ll <− matrix(NA,m,2) #saving all the likelihoods

result <− rq(st.yields˜Xmat+indicmat−1, z/20)

w <− rep(1,T)

w[ result$residuals<0] <− 0

w1 <− w[1:(T/2)]

w2 <− 1−w1

w <− c(w1,w2)

temp.a <− 10 #temporary difference between iterations until j>10

conv <− 0

j <− 1

while (conv<1){

result .both <− lm(st.yields˜Xmat R+indicmat−1,weights=w)

au <− al <− result.both$coefficients[1]

bu <− result.both$coefficients [2]

bl <− result.both$coefficients [3]
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du <− result.both$coefficients [4]

dl <− result.both$coefficients [5]

reg. coef <− c(au,al,bu,bl,du,dl)

mul <− result.both$fitted.values [(( T/2)+1):T] #lower fitted values

muu <− result.both$fitted.values[1:(T/2)] #upper fitted values

s1 <− (sum(w[((T/2)+1):T]∗((st.yields[((T/2)+1):T]−mul)ˆ2))/(sum(w[((T/2)+1):T

])))ˆ0.5 #lower standard deviation

s2 <− (sum(w[1:(T/2)]∗((st.yields[1:(T/2)]−muu)ˆ2))/(sum(w[1:(T/2)])))ˆ0.5 #

upper standard deviation

mw <− mean(w[1:(T/2)]) #mean weight (for upper)

p1 <− dnorm(st.yields[((T/2)+1):T], mul, s1) #probability of lower mixture

p2 <− dnorm(st.yields[1:(T/2)], muu, s2) #probability of upper mixture

w <− p2/(p1+p2) #updated weights

w1 <− w

w2 <− 1−w1

w <− c(w1,w2)

coef [ j ,] <− c(mw,reg.coef,s1,s2) #saving coefficients from this iteration

if (j>10) temp.a <− sum(abs(coef[j,]−coef[j−1,]))

all . ll [ j ,1] <− sum(log((1−mw)∗dnorm(st.yields[((T/2)+1):T],mul,s1)+mw∗dnorm(

st.yields[1:(T/2)],muu,s2)))

#Detecting crossovers:

Xover <− (muu[1]−mul[1])∗(muu[67]−mul[67])

if (Xover<0) temp.a <− 10

#all. ll [ j ,2] <− ifelse(Xover<0,0,1)
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if (al<0) temp.a <− 10

if (s1<(0.10∗s2)) temp.a <− 10

all . ll [ j ,2] <− ifelse(temp.a==0,0,1)

#If difference is less than tolerance level , stop loop, save iteration :

conv <− ifelse(temp.a<tol,1,0)

it .conv <− ifelse(temp.a<tol,j,0)

j <− j+1

if (j>m) conv <− 1 #stop after 500 iterations

}

mw <− mean(w[1:(T/2)]) #mean weight for upper

#like[z] <− sum(log((1−mw)∗dnorm(st.yields[((T/2)+1):T],mul,s1)+mw∗dnorm(st.

yields[1:(T/2)],muu,s2))) #loglikelihood for this quantile

xover. ll <− all. ll [,1]

xover. ll <− xover.ll[ all . ll [,2]>0]

xx <− which.max(xover.ll)

like [z] <− xover.ll[xx]

#coef.fin [z ,] <− c(mw, reg.coef, s1, s2)

coef . fin [z ,] <− coef[xx,]

it .conv.fin [z] <− it.conv #iteration on which convergence occurred

}

ii <− which.max(like) #maximum loglikelihood

coef .new <− coef.fin[ii ,] #ll.func.pn input parameters

coef .new <− coef.new[−3] #because au=al

parm <− coef.new
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parm[1] <− pmin(1,coef.new[1]) #make the lambda the min of mw and 1 (so that it

is not greater than one)

ll <− rep(99999999, 50)

trial <− matrix(0, 50, length(coef.new))

for (f in 1:50){

penalty <− f

result .opt <− optim(parm,ll.func.pn.r)

coef .opt <− result.opt$par

ll [ f ] <− ll.func.r(coef .opt)

if (abs(coef .opt [1])>1) ll [ f ] <− 99999999

if (coef .opt[2]<0) ll [ f ] <− 99999999

if (coef .opt[7]<(0.10∗coef.opt [8]) ) ll [ f ] <− 99999999

fit .up <− coef.opt[2]+coef.opt[3]∗time+coef.opt[5]∗indic

fit .lw <− coef.opt[2]+coef.opt[4]∗time+coef.opt[6]∗indic

Xover <− (fit.up[1]−fit.lw [1])∗( fit .up[67]−fit .lw[67])

if (Xover<0) ll[f ] <− 99999999

trial [ f ,] <− result.opt$par #can also do trial[f ,] <− coef.opt

}

penalty <− which.min(ll) #”optimal” penalty

result .opt <− optim(parm,ll.func.pn.r) #re−estimating with the optimal penalty

coef .opt <− result.opt$par #coefficient estimates from this re−estimation

if (coef .opt[4]>coef.opt [3]){

coef .opt2 <− rep(0,8)

coef .opt2[1] <− 1−coef.opt[1]
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coef .opt2[2] <− coef.opt[2]

coef .opt2[3] <− coef.opt[4]

coef .opt2[4] <− coef.opt[3]

coef .opt2[5] <− coef.opt[6]

coef .opt2[6] <− coef.opt[5]

coef .opt2[7] <− coef.opt[8]

coef .opt2[8] <− coef.opt[7]

coef .opt <− coef.opt2

}

llnew <− ll.func.r(coef .new)

llopt <− ll.func.r(coef .opt)

llboth <− c(llnew,llopt)

ee <− which.min(llboth)

LRunrest <− llboth[ee]

coef .new2 <− c(coef.new[1:2],coef.new[2],coef.new[3:8])

coef .opt2 <− c(coef.opt [1:2], coef .opt [2], coef .opt [3:8])

if (ee==1){

all . coef .unrest[k ,] <− coef.new2

}

if (ee==2){

all . coef .unrest[k ,] <− coef.opt2

}

}

}
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if (length(coef .new)==8){

parm <− coef.new

parm[1] <− pmin(1,coef.new[1]) #make the lambda the min of mw and 1 (so that it

is not greater than one)

ll <− rep(99999999, 50)

trial <− matrix(0, 50, length(coef.new))

for (f in 1:50){

penalty <− f

result .opt <− optim(parm,ll.func.pn.r)

coef .opt <− result.opt$par

ll [ f ] <− ll.func.r(coef .opt)

if (abs(coef .opt [1])>1) ll [ f ] <− 99999999

if (coef .opt[2]<0) ll [ f ] <− 99999999

if (coef .opt[7]<(0.10∗coef.opt [8]) ) ll [ f ] <− 99999999

fit .up <− coef.opt[2]+coef.opt[3]∗time+coef.opt[5]∗indic

fit .lw <− coef.opt[2]+coef.opt[4]∗time+coef.opt[6]∗indic

Xover <− (fit.up[1]−fit.lw [1])∗( fit .up[67]−fit .lw[67])

if (Xover<0) ll[f ] <− 99999999

trial [ f ,] <− result.opt$par #can also do trial[f ,] <− coef.opt

}

penalty <− which.min(ll) #”optimal” penalty

result .opt <− optim(parm,ll.func.pn.r) #re−estimating with the optimal penalty

coef .opt <− result.opt$par #coefficient estimates from this re−estimation

if (coef .opt[4]>coef.opt [3]){
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coef .opt2 <− rep(0,8)

coef .opt2[1] <− 1−coef.opt[1]

coef .opt2[2] <− coef.opt[2]

coef .opt2[3] <− coef.opt[4]

coef .opt2[4] <− coef.opt[3]

coef .opt2[5] <− coef.opt[6]

coef .opt2[6] <− coef.opt[5]

coef .opt2[7] <− coef.opt[8]

coef .opt2[8] <− coef.opt[7]

coef .opt <− coef.opt2

}

llnew <− ll.func.r(coef .new)

llopt <− ll.func.r(coef .opt)

llboth <− c(llnew,llopt)

ee <− which.min(llboth)

LRunrest <− llboth[ee]

coef .new2 <− c(coef.new[1:2],coef.new[2],coef.new[3:8])

coef .opt2 <− c(coef.opt [1:2], coef .opt [2], coef .opt [3:8])

if (ee==1){

all . coef .unrest[k ,] <− coef.new2

}

if (ee==2){

all . coef .unrest[k ,] <− coef.opt2

}
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}

# if (k==32){

# all . coef .unrest[k ,] <− coef.new2 #for KS wheat only

# }

}

Xover remove <− c(29, 16, 6) #counties with crossovers to be removed

all crop coef <− all.coef.unrest[−(Xover remove),]

##### Hypothesis tests #####

LRall <− (2)∗(LRrestAll−LRunrestAll) #LR from restricted and unrestricted models

#Two restrictions

qchi5 <− qchisq(0.95,2) #5.991465

#One restriction

qchi5 <− qchisq(0.95,1) #3.841459

liketest5 <− rep(0,uctyl)

liketest5 [LRall>qchi5] <− 1

sum(liketest5)

#remove crossovers here

Xover remove <− c(29, 16, 6)

crop hyp nx <− crop hyp[−(Xover remove),]

#Holm−Bonferroni method

ff <− dim(crop hyp nx)[1] #number of counties in the state

hh <− seq(0,ff)

HMqchi <− rep(NA, ff)

for (h in 1: ff ){
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HMqchi[h] <− qchisq((1−(0.05/(ff−hh[h]))), 1) #remember to change the df!

}

orderedLR <− sort(crop hyp nx[,10], decreasing = TRUE)

HMdif <− orderedLR−HMqchi

HMsig <− rep(0,ff)

HMsig <− ifelse(HMdif>0, 1, 0)

sum(HMsig)

##### Climate data #####

climate corn <− readRDS(file = file.choose())

ustate <− unique(climate corn[,1])

ustatel <− length(ustate)

clim part <− subset(climate corn, climate corn[,1]==ustate[1])

ucty <− unique(clim part[,2])

uctyl <− length(ucty)

t <− seq(45,65)

corn clim trends <− matrix(NA, uctyl, 12)

for ( i in 1:uctyl){

clim cty <− subset(clim part, clim part[,2]==ucty[i])

for (j in 7:12){

clim reg <− lm(clim cty[45:65,j]˜t)

#summary(clim reg)

corn clim trends[ i , j ] <− clim reg$coefficients [2]

}

}
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corn clim trends <− corn clim trends[,−(1:6)]

cty <− as.character(ucty)

clim trends <− cbind(corn clim trends, cty, ucty)

colnames(clim trends) <− c(”pcp”, ”pcpja”, ”vpd”, ”vpdja”, ”gdd”, ”hdd”,”X”,”cty”

)

clim trends <− clim trends[order(ucty),]

#The following code pairs up the regression data with climate data

crop <− corn

statel <− length(crop[,2])

ustate <− unique(crop[,2])

ustatel <− length(ustate)

statesdata <− subset(crop, crop[,2]==ustate[3]) #make sure you’re grabbing the

right number!

ctyl <− length(statesdata[,4])

ucty <− unique(statesdata[,4])

#remove crossovers here

Xover remove <− c(52, 48, 29) #change depending on crop and state

ucty <− ucty[−(Xover remove)]

#ucty <− ucty

temp crop <− IAcorn #change state and crop!

uctyl <− length(ucty)

cty <− as.character(ucty)

crop mat <− cbind(temp crop[,6:7], cty, ucty)

colnames(crop mat) <− c(”du”,”dl”,”X”,”cty”)
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crop mat <− crop mat[order(ucty),]

diff <− dim(clim trends)[1]−dim(crop mat)[1]

both cty <− cbind(as.character(clim trends[,7]) , c(crop mat [,3], rep(NA,diff))) #Go

through and check which counties need to be removed!!!

temp cty rm <− c(20, 27, 30, 55, 59, 65, 68, 72, 87, 88, 93)

clim trends <− clim trends[−temp cty rm,]

both cty <− cbind(as.character(clim trends[,7]) , c(crop mat[,3]))

crop mat <− temp crop[,6:7]

crop mat <− crop mat[order(ucty),]

clim xy mat <− cbind(clim trends[,1:7], crop mat)

IA corn clim <− clim xy mat #change state and crop!

full corn clim <− rbind(IL corn clim, IN corn clim, IA corn clim, MN corn clim,

OH corn clim, WI corn clim, SD corn clim)

test clim <− cbind(as.numeric(full corn clim[,1]) ,as.numeric(full corn clim [,2]) ,as.

numeric(full corn clim [,3]) ,as.numeric(full corn clim [,4]) ,as.numeric(

full corn clim [,5]) ,as.numeric(full corn clim [,6]) ,as.numeric(full corn clim [,8])

,as.numeric(full corn clim [,9]) )

colnames(test clim) <− c(”pcp”,”pcpja”,”vpd”,”vpdja”,”gdd”,”hdd”,”du”,”dl”)

full corn clim <− test clim

#Regressions

clim corn up <− lm(full corn clim[,7]˜ full corn clim [,1]+ full corn clim [,2]+

full corn clim [,3]+ full corn clim [,4]+ full corn clim [,5]+ full corn clim [,6])

summary(clim corn up)

##### Jackknifing #####

128



n <− 66

all .delta .lw <− matrix(NA, uctyl, 67)

all .delta .up <− matrix(NA, uctyl, 67)

omegas.coef.matrix <− rep(NA,6)

for (k in 1:uctyl){

for (t in 1:67){

ctydata <− subset(statesdata, statesdata[,4]==ucty[k])

year <− ctydata[,1]

year <− year[−t]

yield <− ctydata[,5]

yield <− yield[−t]

n <− length(yield)

indic <− year−1995

indic [ indic<0] <− 0

#Creating the indicator matrix, 1st set of rows for upper, 2nd for lower:

indicmat <− rbind(cbind(indic, rep(0,n)), cbind(rep(0,n), indic))

st . yields <− c(yield, yield) #yields

#Creating the X matrix, 1st set of rows for upper, 2nd for lower:

Xmat <− rbind(cbind(rep(1,n), rep(0,n), seq(1:n), rep(0,n)), cbind(rep(0,n), rep(1,n

), rep(0,n), seq(1:n)))

#Unrestricted model (with splines)

T <− length(st.yields) #length of county yields doubled

m <− 500

tol <− 0.001
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conv <− 0

it .conv <− 0

like <− it.conv.fin <− rep(0,10)

coef . fin <− matrix(0,10,9) #Saving mw, two alphas, two betas, two deltas, s1, s2

like [1] <− −99999999

for (z in 2:10){

coef <− matrix(0,m,9) #this will save all coefficients from all iterations

all . ll <− matrix(NA,m,2) #saving all the likelihoods

all .w2 <− matrix(NA, m, n) #saving the lower omegas

result <− rq(st.yields˜Xmat+indicmat−1, z/20)

w <− rep(1,T)

w[ result$residuals<0] <− 0

w1 <− w[1:(T/2)]

w2 <− 1−w1

w <− c(w1,w2)

temp.a <− 10 #temporary difference between iterations until j>10

conv <− 0

j <− 1

while (conv<1){

result .both <− lm(st.yields˜Xmat+indicmat−1, weights=w)

au <− result.both$coefficients [1]

al <− result.both$coefficients [2]

bu <− result.both$coefficients [3]

bl <− result.both$coefficients [4]
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du <− result.both$coefficients [5]

dl <− result.both$coefficients [6]

if (al>au){

Xmat R <− rbind(cbind(rep(1,n),seq(1:n),rep(0,n)),cbind(rep(1,n),rep(0,n),seq(1:n)))

result .both <− lm(st.yields˜Xmat R+indicmat−1,weights=w)

au <− al <− result.both$coefficients[1]

bu <− result.both$coefficients [2]

bl <− result.both$coefficients [3]

du <− result.both$coefficients [4]

dl <− result.both$coefficients [5]

}

reg. coef <− c(au,al,bu,bl,du,dl)

mul <− result.both$fitted.values [(( T/2)+1):T] #lower fitted values

muu <− result.both$fitted.values[1:(T/2)] #upper fitted values

s1 <− (sum(w[((T/2)+1):T]∗((st.yields[((T/2)+1):T]−mul)ˆ2))/(sum(w[((T/2)+1):T

])))ˆ0.5 #lower standard deviation

s2 <− (sum(w[1:(T/2)]∗((st.yields[1:(T/2)]−muu)ˆ2))/(sum(w[1:(T/2)])))ˆ0.5 #

upper standard deviation

mw <− mean(w[1:(T/2)]) #mean weight (for upper)

p1 <− dnorm(st.yields[((T/2)+1):T], mul, s1) #probability of lower mixture

p2 <− dnorm(st.yields[1:(T/2)], muu, s2) #probability of upper mixture

w <− p2/(p1+p2) #updated weights

w1 <− w

w2 <− 1−w1
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w <− c(w1,w2)

all .w2[j ,] <− w2 #saving the lower omegas from this iteration

coef [ j ,] <− c(mw,reg.coef,s1,s2) #saving coefficients from this iteration

if ( j>10) temp.a <− sum(abs(coef[j,]−coef[j−1,]))

all . ll [ j ,1] <− sum(log((1−mw)∗dnorm(st.yields[((T/2)+1):T],mul,s1)+mw∗dnorm(

st.yields[1:(T/2)],muu,s2)))

#Detecting crossovers:

Xover <− (muu[1]−mul[1])∗(muu[66]−mul[66])

if (Xover<0) temp.a <− 10

#all. ll [ j ,2] <− ifelse(Xover<0,0,1)

if (al<0) temp.a <− 10

if (s1<(0.1∗s2)) temp.a <− 10

all . ll [ j ,2] <− ifelse(temp.a==0,0,1)

#If difference is less than tolerance level , stop loop, save iteration :

conv <− ifelse(temp.a<tol,1,0)

it .conv <− ifelse(temp.a<tol,j,0)

j <− j+1

if ( j>m) conv <− 1 #stop after 500 iterations

}

mw <− mean(w[1:(T/2)]) #mean weight for upper

#like[z] <− sum(log((1−mw)∗dnorm(st.yields[((T/2)+1):T],mul,s1)+mw∗dnorm(st.

yields[1:(T/2)],muu,s2))) #loglikelihood for this quantile

xover. ll <− all. ll [,1]

xover. ll <− xover.ll[ all . ll [,2]>0]
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xx <− which.max(xover.ll)

like [z] <− xover.ll[xx]

#coef.fin [z ,] <− c(mw, reg.coef, s1, s2)

coef . fin [z ,] <− coef[xx,]

it .conv.fin [z] <− it.conv #iteration on which convergence occurred

}

ii <− which.max(like) #maximum loglikelihood

all .delta .lw[k,t ] <− coef.fin[ ii ,7]

all . delta .up[k,t ] <− coef.fin[ ii ,6]

omegas <− all.w2[ii,] #lower omegas for each county

time.jack <− seq(1:67)

time.jack <− time.jack[−t]

omega.reg <− lm(omegas˜time.jack+indic)

save <− summary(omega.reg)

w2.coef <− rep(NA,6)

w2.coef [1] <− save$coefficients [2,1]

w2.coef [2] <− save$coefficients [2,2]

w2.coef [3] <− save$coefficients [2,4]

w2.coef [4] <− save$coefficients [3,1]

w2.coef [5] <− save$coefficients [3,2]

w2.coef [6] <− save$coefficients [3,4]

omegas.coef.matrix <− rbind(omegas.coef.matrix,w2.coef)

}

}
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##### Calculating jackknife standard errors #####

crop delta lw state <− corn delta lw all #corn, soy, wheat

crop delta up state <− corn delta up all #corn, soy, wheat

full crop clim <− full corn clim #corn, soy wheat

#Jackknife standard errors

clim coef <− matrix(NA, 67, 7)

for (b in 1:67){

clim.reg <− lm((crop delta up state[,b])˜ full crop clim [,1]+ full crop clim [,2]+

full crop clim [,3]+ full crop clim [,4]+ full crop clim [,5]+ full crop clim [,6])

save <− summary(clim.reg)

clim coef [b,1] <− save$coefficients [1,1]

clim coef [b,2] <− save$coefficients [2,1]

clim coef [b,3] <− save$coefficients [3,1]

clim coef [b,4] <− save$coefficients [4,1]

clim coef [b,5] <− save$coefficients [5,1]

clim coef [b,6] <− save$coefficients [6,1]

clim coef [b,7] <− save$coefficients [7,1]

}

sejack <− rep(NA, 7)

for (d in 1:7){

sejack [d] <− SE.jack(clim coef[,d])

}

orig reg <− clim corn up

t clim <− rep(NA, 7)
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t clim [1] <− ( orig reg$coefficients [1]) /(sejack [1])

t clim [2] <− ( orig reg$coefficients [2]) /(sejack [2])

t clim [3] <− ( orig reg$coefficients [3]) /(sejack [3])

t clim [4] <− ( orig reg$coefficients [4]) /(sejack [4])

t clim [5] <− ( orig reg$coefficients [5]) /(sejack [5])

t clim [6] <− ( orig reg$coefficients [6]) /(sejack [6])

t clim [7] <− ( orig reg$coefficients [7]) /(sejack [7])

#Printing what you want: original regression, jackknife se , t−stats

summary(orig reg)

sejack

t clim

pt(t clim , 30, lower. tail = FALSE) #change df!

##### Crop insurance premium rates #####

crop prm <− rbind(ILcorn, INcorn, IAcorn, MNcorn, OHcorn, WIcorn, SDcorn)

tt <− 69 #time=2019

ind <− 24 #indic for t=2019

#tt <− 79 #time=2029

#ind <− 34 #indic for t=2029

PCT <− 0.7 #guarantee percentage/coverage level

rates <− matrix(NA, dim(crop prm)[1], 4)

colnames(rates) <− c(”Premium delta”, ”%”, ”Premium without”, ”%”)

for ( i in 1:(dim(crop prm)[1])){

#With deltas:

yml <− crop prm[i,3]+crop prm[i,5]∗tt+crop prm[i,7]∗ind
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ymu <− crop prm[i,2]+crop prm[i,4]∗tt+crop prm[i,6]∗ind

guar <− (((1−crop prm[i,1])∗yml)+(crop prm[i,1]∗ymu))∗PCT

EYl <− yml−crop prm[i,8]∗(dnorm((guar−yml)/crop prm[i,8]))/pmax(0.000001,

pnorm((guar−yml)/crop prm[i,8]))

EYl <− pmin(EYl, guar)

EYu <− ymu−crop prm[i,9]∗(dnorm((guar−ymu)/crop prm[i,9]))/pmax(0.000001,

pnorm((guar−ymu)/crop prm[i,9]))

EYu <− pmin(EYu, guar)

rates [ i ,1] <− ((1−crop prm[i,1])∗pnorm(guar, yml, crop prm[i,8])+crop prm[i,1]∗

pnorm(guar, ymu, crop prm[i,9]))∗(guar−((1−crop prm[i,1])∗EYl+crop prm[i,1]∗

EYu))

rates [ i ,2] <− (rates[i ,1]/guar)∗100

#without deltas:

yml <− crop prm[i,3]+crop prm[i,5]∗tt

ymu <− crop prm[i,2]+crop prm[i,4]∗tt

EYl <− yml−crop prm[i,8]∗(dnorm((guar−yml)/crop prm[i,8]))/pmax(0.000001,

pnorm((guar−yml)/crop prm[i,8]))

EYl <− pmin(EYl, guar)

EYu <− ymu−crop prm[i,9]∗(dnorm((guar−ymu)/crop prm[i,9]))/pmax(0.000001,

pnorm((guar−ymu)/crop prm[i,9]))

EYu <− pmin(EYu, guar)

rates [ i ,3] <− ((1−crop prm[i,1])∗pnorm(guar, yml, crop prm[i,8])+crop prm[i,1]∗

pnorm(guar, ymu, crop prm[i,9]))∗(guar−((1−crop prm[i,1])∗EYl+crop prm[i,1]∗

EYu))
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rates [ i ,4] <− (rates[i ,3]/guar)∗100

}
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